King Saud University
College of Computers and Information Sciences
Department of Computer Science
2" Semester, 1427/1428H

Development of an Automated Testing
Tool for Students’ Programs
Report (Part 1)

Submitted by:

Alia Bahanshal - ID: 425221329
abahanshal@yahoo.com

Submitted To:

Dr. Ghazy Assassa

Submission Date:

May 30, 2007

Abstract

There is a need to increase the quantity and quality of the treatment of
testing in the curriculum because 100% of instruction is spent on the

process of developing software, and very little to how to test software.

Furthermore, instructors and teaching assistants are overburdened with
work while teaching courses and have little time to devote to additional
assessment activities. On large courses, providing feedback on several
programming assighments requires automatic assistance. As in the
Computer Science Department at King Saud University they have 150
students enrolled in (CSC112) an introductory java programming course
which requires a lot of works from the instructors and teaching assistants
to assess each student’s work with the same standards. The obvious
benefits of using automatic assessment tool to assess the students

programs are objectivity, consistency and speed of assessment.

This project aims to design and Implement an automated black-box
(functional) testing tool for student’s programs in an introductory Java
programming course and investigate the impact of using automated

testing tool in both students and educators.

Acknowledgment

To my professor, Dr. Ghazy Assassa, thank you for making this project a

very valuable learning experience.

Table of Contents

Y ¢ B3 = o SRR 2
(O aF=T o) =T it IR o1 f o Yo 1V Tox A Lo] o [PPSR 5
I R I o o To 112 o o OSSO 5
I o o1 =T ¢ TS = L =Y 0 1= o S 6
Chapter 2: LItEIratUIE REVIEW ..cccciiiiiiceeeciesees ettt eee s e st s e e e e seestesaesseese e e entesaessesaesneesenneensensens 7
2.1 Introduction tO SOftWAre TeSTINGcociiireireree e e e seene s 7
2.1.1 What IS SOftWAre TESTING? ..ottt et e et bbb e ne e et s 7

A N Y I) == A g Y o 7

2.1.3 Software TeStiNG SIrat@QIES ... sr s 8

2.2 Introduction to AULOMAtEd TESLING cicciiieicerese e s ne e e e s 9
2.2.1 What is AUTOMAtEd TESTING .ooeiiiiieieie et e b b 9

2.2.2 Automated Testing Life Cycle Methodology ... 9

2.2.3 Automated Testing ENVIFONMENT ... s 11

2.2.4 Automated Testing TECHNIQUES. ...t 12

2.2.5 Manual Testing Vs. Automated TeStiNGccoceieieieie e 14

2.2.6 Benefits of Automated TeSTING ... 14

2.3 Automated TeSLING TOOIS .ot re e se e e e aeseeneenre e 16
2.3.1 A Survey of Coverage Based Testing TOOIS......ccciiriiiiniininineeercee s 16

2.4 Case Study: Automated TeSting iN COUISES ... seseeeeee s ese e eee e sse s 19
2.4.1 Challenges on programming COUTSESccciiiiirirrierieriesiesiesieeeeseeeeseeseesae e ssesseeeeseesseseeens 20

2.4.2 Assessing programming asSigNMENTccvieiieieieie et resre s 22

2.4.3 Integrate Software Testing Throughout the Curriculumcccevvvivviecevcrce s, 22

2.4.4 Test Driven Development 1N COUISES.. .ot be e 23

2.4.5 Test-driven [€arning (TDL) e ree e se et s st e e e srenresre e 24

2.4.6 Automated Grading and ASSESSMENT SYSIEM S ..o 24

2.5 REIALEA WOTKS ..ottt et et s b et e bt b e se b et e se b e e beseebesbeseenenbe e 26
2.5.1 The Web-Based Grading Project (WBGP) ... 26

2.5.2 Web-CAT: A Web-based Center for Automated Testingcccccvceeivverierieveceseseenenn 27

2.5.3 SUDMIL AN PrOgtSt: oo st sae e reese e e e e e srenrenne e 27

2.5.4 List Of Previous ProjeCts FEATUTES: ...t 28
Chapter 3: SYSEEM ANAIY SIS ..t e e e s e et e seesresseeneesee e ensesaeseenrenns 31
3.1 The Automated Testing Tool for Students’ Program Goals and Objectives................. 31
3.2 The Automated Testing Tool for Students’ Program Features and Specifications..... 32
3.3 Automated Testing Tool For Students’ Program Architecture:ininniniennne 36
I e oY= ox A = o USSR 37
TSN - LV - T =3 4 o T 1 Yo 38

= =] =T o = 40

Chapter 1: Introduction

1.1 Introduction

Testing is becoming more important with the huge improvement in the software
developing because the programmers’ use of the GUI made software products more

complex and led to the development of new testing tools.

In [Srivastava, 2002] the author explained that software testing may be viewed as a
sub-field of software quality assurance but typically exists independently where
software process specialists and auditors take a broader view on software and its
development, examine and change the software engineering process itself to reduce

the amount of faults that end up in the code or deliver faster.

[Li, 2004] shows that performing computer software testing can be done at different
levels early from unit testing and moving on to integration testing, systems testing
and acceptance testing. During the early stages of the testing cycle, the software
developer does most of the testing and this activity is boring, tedious and uncreative.
Regardless of the methods used or level of formality involved the desired result of
testing is a level of confidence in the software so that the developers are confident

that the software has an acceptable defect rate.

In [Berner, 2005] the author shows a problem with software testing that the number
of defects in a software product can be very large and bugs that occur infrequently are
difficult to find in testing. A rule of thumb is that a system that is expected to function
without faults for a certain length of time must have already been tested for at least
that length of time. This has severe consequences for projects to write long-lived

reliable software.

[Mayer, 1976] explains a common practice of software testing that is performed by an
independent group of testers after the functionality is developed but before it is
shipped to the customer. This practice often results in the testing phase being used as
project buffer to compensate for project delays. Another practice is to start software
testing at the same moment the project starts and it is a continuous process until the
project finishes. Another common practice is for test suites to be developed during
technical support escalation procedures. Such tests are then maintained in regression
testing suites to ensure that future updates to the software don't repeat any of the
known mistakes. It is commonly believed that the earlier a defect is found the cheaper

it is to fix it.

Manual testing was and still the known way for software testing but it is also a very
highly costing one. In [Dustin, 1999] the author shows that software project
managers and software developers today build applications while facing the challenge
of doing so within an ever-shrinking schedule and with minimal resources. As part of
their attempt to do more with less, organizations want to test software adequately,
but as quickly and thoroughly as possible. To accomplish this goal, organizations are

turning to automated testing.

In [Niemeyer, 2003] the authors showed number of benefits of the automated testing
For one, the tests are repeatable so when a test is created, it can be run each time
the testing process is launched. Automating testing reduces the fatigue of performing
testing manually, which leads to more consistent results. Also, because the tests are
automated, they're easy to run, which means that they will be run more often. As new
bugs are discovered and fixed, tests can be added to check for those bugs, to ensure

that they aren't reintroduced. This increases the overall completeness of testing.

To accomplish the testing phase successfully we need qualified testers that will
perform all the testing tasks or monitor the test automation. The first step to produce
fine testers starts from first years of education according to [Shepard, 2001] which
showed that more testing should be taught to CS students because they are not well
equipped to apply widely practiced testing techniques, and they are graduating with a
serious gap in the knowledge they need to be effective software developers. Even new
software engineering curricula tend to be weak in software testing because highly
effective practices such as software inspection and testing are hardly taught at all, and
many computer science professors do not know or care what inspection is and why it

is valuable.

Furthermore, instructors and teaching assistants are overburdened with work while
teaching courses and have little time to devote to additional assessment activities.
Using an automated testing tool to test students program would benefit in both
reducing the amount of assessment work on instructors and allow them to devote
more efforts and time on teaching testing practices and techniques to produce good

guality testers in the future.

1.2 Problem Statement

The objective of this project is to design and develop an automated black-box
(functional) testing tool for student’s programs in an introductory Java programming
course (CSC112) and investigate the impact of using such tool in both students and

educators.

Chapter 2: Literature Review

Many researches were made and papers were published in the test automation topic.

The results from collecting and studying these works are:

e Selecting this important topic.
e Understanding the scope of the proposed idea.
o |dentifying the objectives via analyzing the optimistic conclusions.

e The desire to experiment such experiences in our university.

2.1 Introduction to Software Testing

2.1.1 What | s Software Testing?

[Myers, 1976] defines testing as “the process of executing a program or system with

the intent of finding errors.”

Other definitions of testing include: “Finding bugs in programs”, “Showing correct
operation of a program”, “Testing is the process of establishing confidence that a

program or system does what it is supposed to do”.

Software testing is the process used to help identify the correctness, completeness,
security, and quality of developed computer software. Testing is a process of technical
investigation, performed on behalf of stakeholders, that is intended to reveal quality-
related information about the product with respect to the context in which it is
intended to operate. This includes, but is not limited to, the process of executing a

program or application with the intent of finding errors.

2.1.2 Level of Testing

There are four levels of software testing. Each level builds on the last.

e Unit testing tests the minimal software component that can be tested.
[Barriocanal, 2002]

e Integration testing exposes defects in the interfaces and interaction between

integrated components.

e System testing tests an integrated system to verify that it meets its

requirements.

e Acceptance testing allows the end-user or customer to decide whether or not to

accept the product.

2.1.3 Software Testing Strategies

[Myers, 1976] explained two different testing strategies:
e Black-Box Testing

Black box testing takes an external perspective of the test object to derive test cases.
These tests can be functional or non-functional, though usually functional. The test
designer selects valid and invalid input and determines the correct output. There is no

knowledge of the test object's internal structure.

This method of test design is applicable to all levels of software testing: unit,
integration, system and acceptance. The higher the level, and hence the bigger and

more complex the box, the more we're forced to use black box testing to simplify.
e White-Box Testing

White box testing or logic-driven testing (clear box testing, glass box testing or
structural testing) uses an internal perspective of the system to design test cases
based on internal structure. It requires programming skills to identify all paths
through the software. The tester chooses test case inputs to exercise all paths and

determines the appropriate outputs.

While white box testing is applicable at the unit, integration and system levels of the

software testing process, it's typically applied to the unit.

2.2 Introduction to Automated Testing

2.2.1 What is Automated Testing

[Dustin, 1999] explains test automation; it is the use of software to control the
execution of tests, the comparison of actual outcomes to predicted outcomes, the

setting up of test preconditions, and other test control and test reporting functions.

Commonly, test automation involves automating a manual process already in place

that uses a formalized testing process, such process includes:

o Detailed test cases, including predictable "expected results", which have been

developed from Business Functional Specifications and Design documentation.

e A standalone Test Environment, including a Test Database that is restorable to a
known constant, such that the test cases are able to be repeated each time there

are modifications made to the application.

2.2.2 Automated Testing Life Cycle Methodology

In [Dustin, 1999] the author discussed the automated test lifecycle methodology

which comprises six primary processes or components:
e Phase 1: Decision to Automate Testing

During this phase, it's important for the test team to manage automated testing
expectations and to outline the potential benefits of automated testing when
implemented correctly. A test tool proposal needs to be outlined, which will be
helpful in acquiring management support. Some of the issues that organizations

face when adopting automated test systems include those outlined below:

¢ Finding and hiring test tool experts.

e Using the correct tool for the task at hand.

e Developing and implementing an automated testing process, which includes
developing automated test design and development standards.

e Analyzing various applications to determine those that are best suited for
automation.

e Analyzing the test requirements to determine the ones suitable for automation.

e Training the test team on the automated testing process, automated test
design, development, and execution.

e [|nitial increase in schedule and cost.

Phase 2: Test Tool Acquisition

This phase guides the test engineer through the entire test tool evaluation and
selection process, starting with confirmation of management support. Since a tool
should support most of the organizations' testing requirements, whenever feasible
the test engineer will need to review the system's engineering environment and

other organizational needs and come up with a list of tool evaluation criteria.
Phase 3: Automated Testing I ntroduction Process

This phase outlines the steps necessary to successfully introduce automated
testing to a new project team. Test process analysis ensures that an overall test
process and strategy are in place and are modified, during the test process
analysis, techniques are defined. Best practices are laid out, such as conducting
performance testing during the unit-testing phase. The test tool consideration
process includes steps that investigate whether incorporation of automated test
tools that have been brought into the company without a specific project in mind

now would be beneficial to a specific project.
Phase 4: Test Planning, Design, and Development

The test planning stage represents the need to review long—lead-time test
planning activities. During this phase, the test team identifies test procedure
creation standards and guidelines. The test design component addresses the need
to define the number of tests to be performed, the ways that testing will be
approached (paths, functions), and the test conditions that need to be exercised.
Test design standards need to be defined and followed. For automated tests to be
reusable, repeatable, and maintainable, test development standards need to be

defined and followed.
Phase 5: Execution and Management of Tests

At this stage, the test team has addressed test design and test development. Test
procedures are now ready to be executed in support of exercising the application

under test.
Phase 6: Test Program Review and Assessment

Test program review and assessment activities need to be conducted throughout
the testing lifecycle, to allow for continuous improvement activities. Throughout
the testing lifecycle and following test execution activities, metrics need to be
evaluated and final review and assessment activities need to be conducted to allow

for process improvement.

10

2.2.3 Automated Testing Environment

2.2.3.1 Planning for Test Automation

The planning or the decision for automated testing is the first component to establish

the automated testing environment as mentioned in the previous (ATLM).

2.2.3.2 Automatic Test Generation

[Edvardsson, 1999] explains how to reduce the high cost of manual software testing
and at the same time increase the reliability of the testing processes by automating it
and one of the most important components in a testing environment is an automatic
test data generator, he proposed three different methods for generating test data:

random, path-oriented, and goal-oriented test data generation.

¢ Random Test Data Generation

Generate input values for any type of program where a data type such as integer,
string, or heap is just a stream of bits. For example, for a function taking a string as
an argument we can just randomly generate a bit stream and let it represent the

string. This method is the simplest one of generation techniques.

e Goal-Oriented Test Data Generation

In this method the generator finds input for any path, which reduces the risk of
encountering relatively infeasible paths and provides a way to direct the search for
input values as well. Instead of letting the generator generates input that traverses
from the entry to the exit of a program. The goal-oriented approach is much stronger

than random generation.
e Path-Oriented Test Data Generation

This method does not provide the generator with a possibility of selecting among a set
of paths, but just specific one. Successively this leads to a better prediction of
coverage. On the other hand it is harder to find test data. Path-oriented generation is

strongest among the three approaches.

2.2.3.3 Logging Automated Test Results

Dealing with the test results is a very important concern, it is much more important
than the test automation itself. A proper archiving and logging is required to prevent

the failure of the whole testing process.

11

2.2.4 Automated Testing Techniques

2.2.4.1 Test-driven development

[Stephen, 2003] explains Test-driven development; TDD is a new technique that
involves repeatedly first writing a test case and then implementing only the code
necessary to pass the test. Test-driven development gives rapid feedback. Also in
[Edwards, 2004] authors show some benefits of the test-driven development
techniques: it can help build software better and faster, It offers more than just
simple validation of correctness, but can also drive the design of a program. By
focusing on the test cases first, one must imagine how the functionality will be used
by clients. Therefore, the programmer is only concerned with the interface and not the
implementation. This benefit is complementary to Design by Contract as it approaches
code through test cases rather than through mathematical assertions or
preconceptions. The power test-driven development offers is the ability to take small
steps when required. It allows a programmer to focus on the task at hand as the first
goal is to make the test pass. Exceptional cases and error handling are not considered
initially. Tests to create these extraneous circumstances are implemented separately.
Another advantage is that test-driven development, when used properly, ensures that
all written code is covered by a test. This can give the programmer, and subsequent

users, a greater level of trust in the code.

2.2.4.2 Automated Regression Testing

[Korel, 1998] explains regression testing which involves testing the modified program
in order to establish the confidence that the program will perform according to the
modified specification. In the development phase, regression testing may be used
after the detection and correction of errors in a tested program. Also, the software
maintenance cost may be significantly reduced if an automated regression testing was

adopted rather than the time consuming and expensive traditional regression testing.

[Xie, 2005] shows that in comparing the actual outputs of two program versions
regression testing is concerned in exposing the internal behavioral differences during
the program execution, which can be used to track the quality of program output and

not only testing the correctness of it.

12

- There are two types of regression testing:

1. Progressive regression testing: performed when the modified version of the

software involves a change in the specification.

2. Corrective regression testing: performed when the modification does not

involve a change in the software specification.

2.2.4.3 Automated GUI testing

[Li, 2004] explained GUI software testing as the process of testing a product that uses
a graphical user interface, to ensure it meets its written specifications. This is normally
done through the use of a variety of test cases with most software now driven by
graphical user interfaces of such complexity that manual testing is now a time-

consuming and costly task; there is an overwhelming case for automation.

GUI Automating test execution is normally justified based on the need to conduct
functional regression tests. In organisations where development follows a Rapid
Application Development (RAD) approach or where development is messy, regression
testing is difficult to implement at all - software products may never be stable enough
for a regression test to mature and be of value. A systematic approach to testing GUIs
and using tools selectively for specific types of tests can be adopted and tools can be

used to find errors during the early test stages.

e Elements of Automated GUI Testing
e A process
e A GUI Test Plan

e A set of supporting tools

2.2.4.4 High Volume Test Automation (HVTA)

[McGee, 2004] has presented HVTA techniques as the automated execution and
evaluation of large numbers of tests, for the purpose of exposing functional errors that

are otherwise hard to find.

By using the HVTA techniques, the reliability of software that works for long time with
out stopping is increased because the ability for this technique to find specific types of
errors much better than most traditional test techniques. High volume automated
testing has been used to qualify safety-critical software, such as air traffic control

systems, medical heart monitors, and telephone systems.

13

2.2.5 Manual Testing Vs. Automated Testing

In [Berner, 2005] the authors found that most new defects is detected by the manual
tasks not the automated ones because 60% of the bugs are found during an
automated testing effort and 80% are found during the development of the tests. In
[Korel, 1998] authors showed that automated functional tests can be used for
regression testing, If an organization is running the same manual regression tests
repeatedly, then the automated tests can replace some of that effort, but they also
add the effort to maintain the tests, which is sometimes more than the work required
to just running the tests manually. Some of the effort means that test failures from an
automated test run still must be analyzed manually. Also, any part of the process of
provisioning and setting up the machine to run the tests, kicking off the test run, and

babysitting it along the way that isn't automated will still require manual attention.

In [Srivastava, 2002] the author showed that the testing process will be most
benefited if one has an optimum mixture of automated and manual tests. The
automated tests should usually be those, which cover the most important features of
the product and are likely to be executed in all the regressions. Automated and
manual tests must coexist to improve the overall testing productivity. It is not possible
to automate all test suites. Some tests cannot be automated because the tool or
testing framework does not support automation. For example, with a console-testing
tool, the automation of GUI tests will not be possible. There might be other tests,
whose automation is not possible because the product under test requires some
manual hardware intervention to execute those tests, or the whole automation is not
cost-effective which might require enormous amounts of the developers’ time for
automation/maintenance and might test a small, not very important feature of the

product under test.

2.2.6 Benefits of Automated Testing

Software testing accounts for 50% of the total cost of software development. In order
to reduce the high cost of manual software testing researchers and practitioners have
tried to automate it. In [Niemeyer, 2003] the authors listed many benefits of
automated testing, for one, the tests are repeatable, so when a test is created it can
be run each time the testing process is launched. Automating testing reduces the
fatigue of performing testing manually, which leads to more consistent results. Also,
because the tests are automated, they're easy to run, which means that they will be

run more often. As new bugs are discovered and fixed, tests can be added to check for

14

those bugs, to ensure that they aren't reintroduced. This increases the overall

completeness of testing.

Testing is a repeatable process and automated testing achieves an important part of
the testing process by making it possible to conduct regression testing, to retest the

same scenario again.

Automating the process maintains consistency from one run of the test to the next,
regardless of how much time passes between the two runs of the tests or who is
executing the tests because consistency issues are easiest to observe in teams with
multiple testers and developers, but even a single tester would rarely conduct the

same tests the same way each time.

Automated testing use self-documenting system, which is the best kind of

documentation which does not have to be written and yet is guaranteed to be correct.

By automating the testing process, the computer will usually execute the testing
process in less time than it takes a tester to perform manually. Again, manual testing
has its place; the advantage of automated testing is that it can easily catch many of
the problems before manual testing even begins.

The benefits of automated testing are:

e |s arepeatable process

e Uses a consistent approach

e Follows a documented process

e Frees up developer-hours for more profitable tasks

e Is expandable and flexible, with changes in code propagated to the testing

procedure faster and more efficiently

e Negates the fatigue factor as development deadlines approach because automated

tests will eliminate the stress and workload of manual testing on developers
e Produce a reliable system
e Improve the quality of the test effort.
e Reduce test effort and minimize schedule.
Some drawbacks are that some features don't easily lend themselves to automated

testing. For example, sometimes automation-testing software can be used to test

complex GUI applications, but often these applications must be tested by hand.

15

2.3 Automated Testing Tools
2.3.1 A Survey of Coverage Based Testing Tools

In [Yang, 2006] the authors performed a survey that studies and compares 17

coverage-based testing tools.

The study includes comparison of three features:
e Code coverage measurement
e Coverage measurement criteria
e Automation and reporting

e Code coverage measurement

All tools included in this survey have coverage measurement capability, but may apply
only to a limited set of programming languages, some to C/C++ only, some to Java
only, some to both, and some to other languages such as FORTRAN, COBOL, or

JavaScript. Tools covered in the survey are listed below:

C/ C++ Java Other
Agitar X
Bullseye X
Clover X .net
Cobertura X
CodeTest X
Dynamic X
EMMA X
eXVantage X X
gcov X
Insure+ + X
I ntel X
JTest X .net
JCover X
Koalog X
PurifyPlus X X Basic, .net
Semantic C#, PHP,
Designs X X COBOL,

PARLANSE

TCAT X X

Tablel: Coverage Tools and the Languages to Which They Apply

¢ Coverage measurement criteria

Picking the right measurement requires balancing usability with thoroughness. Some
tools provide various levels of code coverage information. There is a large variety of
coverage measurement criteria: statement coverage (line coverage), decision coverage
(branch coverage), path coverage, function/method coverage, class coverage and so on.

Table 2 gives a list of tools with their coverage measurement criteria.

ke =

1 - = -
Agitar [3] X X X X
Bullseve [5] X X
Clover [6] X X X
Cobertura [7] X X
CodeTest [8] X X
Dynamic [9] X X X
EMMA [21] X X X
eXVantage [4] X X X
gcov [10] X
Insure++ [11] X
JCover[13] X X X X
JTest [15] X X
PurityPlus [16] X X
SD [17] X X X X
TCAT [18] X X X X

Table2: Levels of Covera ge Measurement Provided B y Tools

17

e Automatic Test Generation and Reporting

Another important feature for comparison is automation; automation of testing process
includes many steps, such as test case generation, test execution, and test oracles.
Another important automation area is test generation, which is more tightly linked with
code coverage. None of the tools in our list can generate test cases for C/C++ code, but
Parasoft, Agitar, and eXVantage claim the capability of generating Java test cases
automatically. Parasoft has its patented test case generation technology. Agitator
provides a certain level of automation by combining test suite generation and execution.
Besides automation, a friendly graph interface is also an important feature for
comparison. The user interface can be a decisive element for a tool's usability. The first
impression of a software tool is very important to users in their tool selection. There are
two aspects of the user interface in this case: deployment and report generation.

Some tools have both a GUI version and a batch mode to suit the requirements of
different users. One part of the GUI display or the output of the batch mode is the
coverage report. Most commercial products include sophisticated report generation
components, some of which are graph-based and some file-based.

See table 3 for a list of report formats.

T

- | 2| &

-’ — k=

o [pd
Agitar [3] X
Clover [6] X X | PDF. XML
Cobertura [7] X X | XL
Dynamic [9] X
JCover [13] X X | oL csv
Koalog[14] X X | CSV.LaTex XML
JTest [15] X X Group reporting system
PurifyPlus [16] X
SD[17] X X Test coverage vector file, XML
TCAT [18] X
eXVantage [4] X X Customizable

Table 3: Tool Reporting Formats

18

2.4 Case Study: Automated Testing in Courses

With the rapid evolution of computers and information technology, computer science has

gained a significant role in the technology education. The basics of computer science are

needed in several curricula.

In [Douce, 2005] the authors showed that programming problems and assignments
are considered essential elements of software engineering and computer science
education and it is usually incorporated to the introductory studies. Programming
assignments can help students become familiar with the attributes of modern
programming languages, become acquainted with essential tools, and to understand
how the principles of software development and design can be applied. The
assessment of these assignments places significant demands on the instructor’s time
and other resources. An automated tools and utilities can be adopted to simplify the
tasks that both instructor and student had to carry out so that the assignment could

be assessed automatically.

In [Snyder, 2004] the author explained one way to improve the confidence that a
program does what it is supposed to do, both from the student point of view and from
the teacher point of view, is to use test cases. But, for beginning students to use a
testing methodology, the methodology must be fairly simple and consistent from one
program to the next. Although the programming model used has input coming from
the keyboard or an input text file, there is another source of input, and that is input

that is embedded in the program itself.

In [Shepard, 2001] the authors showed that less than 50% of undergraduate
curriculum is devoted to testing issues, and this percentage, and resultant depth of

understanding, should increase by providing the students with an understanding of:
e The broad issues of testing.

e The proper places for testing activities in software processes.

e How to plan and design good test strategies.

e How to minimize testing.

In [Edwards, 2004] the author showed that many computer science educators have
been looking for an effective way to improve the coverage of software testing skills
that undergraduates receive. So, the time devoted to testing activities in industry will

be reduced as a result of better design and testing practices they will have.

19

2.4.1 Challenges on programming courses

In [Ala-Mutka, 2004] the authors introduced some typical problems faced by students

and teachers and review existing assessment practices for programming.

1.

Students have often difficulties in building mental model of computer programs,
since it differs from the structure of natural language. Even when the students
have learned the programming concepts and languages, they may still lack the
skills for using this knowledge to create computer programs. Thus, if the students
are expected to learn to generate computer programs, it requires “hands-on”

experience with practical programming tasks.

Students don’'t work on voluntary assignments, a possible reason for that is
sometimes they see programming assignments as separate tasks with
unnecessarily complex assessment requirements. A proposed solution is getting
the students involved with the practical components of the course required
frequent (online) evaluations, and they should either frequently submit laboratory
assignments or be required to answer weekly quizzes about the contents of the

assignments.

Real-world applications and software projects are so large that they cannot be
covered on one or even several courses, but still the students should learn skills
for working in such situations. Therefore, the complexities and practices of
professional work must be introduced partly in theory and partly by assignments
that are simplified from real-world systems. For teachers, this means that they
need to plan the assignments very carefully. For students, this means that they
are required to learn and follow several basic rules, although the effects of their

neglections cannot always be shown in practice.

Novice programmers are usually not very good at evaluating their work, as even
incorrect programs can seem to work as desired, because complex requirements of
good and correct programming practices make the assignments hard to assess.
Also if he students have not yet learned the issues of “good programming”, they
cannot assess them effectively either. For this reason, assessment and feedback

by an expert is always needed.

The work needed for giving good feedback places heavy workload for teachers.
also the issues of assessment objectivity, consistency and speed are hard to take
care of. These problems become emphasized on large courses, where several

tutors are needed for the assessment work.

20

Another widely recognized problem is cheating. Since computer programs are in
electronic form, they are easy to copy. In [Sheared, 2002] the authors had
concerned results in their study of IT students’ attitudes to cheating at two
universities. 34% of the respondents admitted that they had copied a majority of
an assignment from a friend. 53% had collaborated on an assignment that was
meant to be completed individually. This fact needs to be taken into account for

ensuring students’ learning.

Challenges to adopting software testing practices in assignments:

[Edwards, 2004] stated five perceived roadblocks to adopting software testing

practices in assignments:

1. Software testing requires experience at programming, and may be something

introductory students are not ready for until they have mastered other basic skills.

Instructors just do not have the time (in terms of lecture hours) to teach a new

topic like software testing in an already overcrowded course.

The course staff already has its hands full assessing program correctness—it may

not be feasible to assess test cases too.

To learn from this activity, students need frequent, concrete feedback on how to
improve their performance at many points throughout their development of a
solution, rather than just once at the end of an assignment. The resources for
rapid, thorough feedback at multiple points during program writing just are not

available in most courses.

Students must value any practices we require alongside programming activities. A
student must see any extra work as helpful in completing working programs,
rather than a hindrance imposed at the instructor’s desire, if we wish for students

to continue using a technique faithfully.

By combining a suitable testing technique with the right assessment strategy, and

supporting them with the right tools, including an automated assessment engine, it is

possible to overcome all of these difficulties.

21

2.4.2 Assessing programming assignment

One approach is to require students to test their own code in programming
assignments, and then assess them on this task as well as on the correctness of their
code solution. Two critical issues immediately arise one, what testing approach should
students use? The approach must provide practical benefits that students can see, and
yet be simple enough to apply across the curriculum. Second, how will students be
assessed on testing tasks? In particular, if students must test their own code, and
then be graded on both their code and their testing, how can we avoid doubling the
grading workload of faculty and teaching assistants while also providing feedback
frequently enough and specifically enough for students to improve their performance?
On large courses, providing feedback on several programming assignments requires
automatic assistance. The obvious benefits of using automatic assessment tool to
assess the students programs are the objectivity, consistency and speed of
assessment.

Also the assignment descriptions and measurement criteria are carefully designed by
necessity, since they have to be programmed to the automaton, which will enhance
the quality of assignment and make them more objective and the student will be able
to understand carefully the desired output and when students are provided with
clearly stated objectives and assessment criteria, they are able to control their
learning process and become more self-directed learners.

In the following sections some approaches and automatic assessment tools and

grading are presented.

2.4.3 Integrate Software Testing Throughout the Curriculu m

In [Goldwasser, 2002] the authors presented an approach to teach student testing
skills, students of a programming course were asked to submit both an
implementation and test set. Student's grade was then dedicated on both the validity
of a student's program on others' test sets and on how that student's test set

performed in uncovering flaws in others' programs.

The advantages of this approach are:
1. Competitive scoring provides a bit of bright motivation to course work.
2. Students feel fully included in developing their own test sets.
3. Offers a wonderfully diverse environment for software testing.

4. The scoring system provides a quantitative evaluation of both program validity

and test set quality that can be included as part of the overall grade.

22

2.4.4 Test Driven Development I n Courses

[Stephen, 2003] explained how TDD can be practiced in courses, In TDD, student
writes one or more test cases before adding new code. The test cases capture what
behavior the student is attempting to produce. Then, the student writes new code,

these tests tell when the student has achieved his latest goal.

TDD is attractive testing approach for use in an educational setting for many reasons:

e |t is easier for students to understand and relate to than more traditional testing
approaches.

e |t promotes incremental development, promotes the concept of always having a
“running version” of the program at hand, and promotes early detection of errors
introduced by coding changes.

e |t directly combats the “big bang” integration problems that many students see
when they begin to write larger programs, where testing is saved until all the code
writing is complete.

e |t dramatically increases a student’s confidence in the portion of the code they
have finished, and allows them to make changes and additions with greater
confidence because of continuous regression testing.

e |t increases the student’'s understanding of the assignment requirements, by
forcing them to explore the gray areas in order to completely test their own
solution.

e |t also provides a lively sense of progress, because the student is always clearly
aware of the growing size of their test suite and how much of the required
behavior has already been completed. Most importantly, students begin to see

these benefits for themselves after using TDD on just a few assignments.

The tool support that is available for TDD is also important. TDD frameworks are
readily available, including JUnit for Java, and related XUnit frameworks for other
languages. Although these frameworks are aimed at professional developers, similar

educational tool support is also becoming available:

DrJava: which is designed specifically as a pedagogical tool for teaching introductory
programming, provides built-in support to help students write JUnit-style test cases

for the classes they write,

BlueJ: an introductory Java environment designed specifically for teaching CS1 also
provides support for JUnit-style tests. BlueJ's JUnit support allows students to “record”
simple object creation and interaction sequences as JUnit-style test cases. Such tools
make it easy for students to write tests from the beginning, and also mesh nicely with

an objects-first pedagogy.

23

2.4.5 Test-driven learning (TDL)

In [Janzen, 2006] the authors presented Test-driven learning (TDL) which is an
approach to teaching computer programming that involves introducing and exploring
new concepts through automated unit tests. TDL offers the potential of teaching
testing for free, of improving programmer comprehension and ability, and of

improving software quality both in terms of design quality and reduced defect density.

TDL can be employed starting in the earliest programming courses and continuing
through advanced courses, even those for professional developers. Further, TDL can

be applied in educational resources from textbooks to software documentation.
Test-driven learning has the following objectives:

e Teach testing for free

e Teach automated testing frameworks simply

e Encourage the use of test-driven development

e Improve student comprehension and programming abilities

e Improve software quality both in terms of design and defect density

2.4.6 Automated Grading and Assessment Systems

Unfortunately, instructors and teaching assistants are already overburdened with work
while teaching computer science courses and have little time to devote to additional
assessment activities. As a result, an automated tool for grading student programs is
desirable. Many educators have used automated systems to assess and provide rapid

feedback on large volumes of student programming assignments.
e Generations of Assessment Systems

[Douce, 2005] presented three generation of assessment systems:
1. First Generation — Early Assessment Systems

The earliest example of automated testing of programming assignments were found at
1960, where students submitted programs written in assembly language on punched
cards rather than using compilers and text editors. A grader program was run against
a student program and two different results were returned, either “wrong answer” or
“program complete”. a key advantages was also the efficient use of computing

resources, which allowed a greater number of students to learn programming.

24

2. Second Generation — Tool-Oriented Systems

The second generation assessment systems were developed using pre-existing tool
sets and utilities supplied with the operating system or programming environment.
The testing engines and systems are often used and activated in the form of
command-line or GUI programming tools. An example of a second-generation

assessment tool can be seen in the work of [Isaacson, 1989].

The second generation assessment systems programming assignments assessment
involve two activities: checking the program to see that it operates correctly and

checking the program to see that the programming style has been applied sensibly.

In [Reek, 1989] the TRY system was introduced, which introduced automated testing
to the student and allows students to test their programs using a tester program.
When the tester program is executed, the student is presented with a set of results
and the test attempt is recorded. Like other systems of that period, testing is
performed by a simple character-by-character comparison of results generated against

expected ones.

In [Jackson, 1997] The ASSYST system was introduced to introduce a scheme that
analyzes submissions across a number of criteria. ASSYST analyzes whether
submissions are correct, whether submissions are efficient in their use of CPU time,

and whether they have sensible metric scores that correspond to complexity and style.
3. Third Generation — Web-Oriented Systems

Third-generation assessment systems make use of developments in web technology

and adopt increasingly sophisticated testing approaches.

Some of these works will be presented in related works sections.

25

2.5 Related Works

A literature review of previous efforts and works serves several purposes; it is possible
to gain an appreciation of the approaches adopted by others in the past by examining
the projects that have been undertaken, this is useful from both technical and didactic
perspectives. Previous projects may be able to inform current development by
illuminating the kinds of problems that were encountered and how they were
overcome, whether a particular application was successful and whether other system

developers had any insights into how contemporary systems should be constructed.

251 The Web-Bas ed Grading Project (WBGP)

In (David, 2005) the author described web-based grading software for grading
computer science projects which was developed at Ohio University, and it is an open-
source effort to provide a set of tools to help computer science educators build web
versions of graded student assignments and provides facilities to build, test, and
annotate student source code with comments concerning programming style and

documentation.

¥ The Web-Based Grading Project =ji 0%
Step 1: Choose Working Directory
chouse Dir |
Step 2: Configure Project
Confiy. Project. |
Step 3:Selup Test Cases
Selup Tesls I
m'student Submissions
Untar Student Submissions I
Step 5: Compile Student Projects

Compile Student Submissions I
Step 6: Evaluate Compilation Results
Evaluate Compilation I
Step 7: Execute Test Cases
Run Tests !
Step 6: Evaluate Results of Testing
Evaluate Testing |

Copyright 2004, Dapid W. Juedes

LHilities:

Step 9: Evaluate Comments
Rt R LI Step 13: Check for Similarities

Evaluate Comments | R s |

‘Step 14: Build Aggregate Grading Reports
Build Reports |

étep 15: ;:nnﬂgur"e a Portfolio
Confiy Fortrolin |

Step 10: Evaluate Design/Code
Evaluate Desigh/Code |

Step 11: Grade/Build Web Pages
Build Pages

Step 12; Quit
Quit I

Step 16: Build Student Portfolios
Build Portrolio |

Figure 1 - WBGP Interface

26

2.5.2 Web-CAT: A Web-based Center for Automated Testing

In (Edwards, 2004) the author presented Web-CAT, an advanced automated grading
system designed to process computer programming assignments and was developed

at Virginia Polytechnic Institute and State University.

Web-CAT can grade students on how well they test their own code and supports

virtually any model of program grading, assessment, and feedback generation.

Web-CAT runs on a server and provides all of its capabilities via a web interface. All
submission activity, feedback, viewing of results, and grading activities take place via

the web browser.

/7 Web-CAT: Submit an Assignment for C5 1705: Program-2 - it Int =10l x|

Flle Edt Wew Favorites Tools Help ‘ Links »L

R z R =
Submit an Assignment for CS 1705: Program-2

This is your first submission for this assignment.

Choose the file to upload:

|trashmam.jar Browse... |

Cancel Come Back Later | < Back

,7 ’7 ,7 & Local intranet

Figure 2 - Web-CAT: Students Submit Assignments

2.5.3 Submit and Progtst:

In [Harris, 2004] the author discussed tools used in introductory programming course
that assist in the program evaluation process and make program grading easier. The
two tools to automate the programming assignment submission and evaluation

process are Submit and Progtst.

e The Submit utility provides a mechanism for sending to the instructor all required

materials in electronic form with an accurate time-stamp.

e The Progtst utility works in conjunction with submit to test programs when they

are submitted.

e Submit and Progtst were presented by the Department of Computer Science at

James Madison University, Harrisonburg.

27

2.5.4

List of Previous Projects Features:

Automated

Testing Feature Description
Project
. Linux/Unix based environments (Mac-
1. Environment
OS, etc.).
The WBGP uses four main directories
2. Choose working fo_r each graded _pr(_)Ject:_Workmg
directory Directory, Submission Directory, Test
Case Directory, Example Solutions
Directory.
A detailed non-easy configuration
needed, for example: Execution time
3. Configuring project limit: the amount of time that the shell
scripts will give each compilation/test
case before it is Killed.
Setting up the test, the testing
G0 SN HEEH CESES directory should be included.
5 Un-Tar students _Stud_ents submit th_elr Z|ppe_d files and
bmissions in this step they will be unzipped under
1. WBGP su student directory.
6. C‘”T‘p"e students Compile students’ submitted files.
projects
£ Evalu_ate_ Evaluation of results is made.
compilation results
8. Execute test cases Run tests.
9. Evaluate results of .
. Evaluate testing.
testing
10.Evaluate comments Evaluate comments.
11.Evaluate]
Design/ Code Evaluate Design/Code.
12.Grade Grade and build WebPages.
2. Web-CAT 1. Environment Plug-in-based web application
Web-CAT serves as a course
. i management system for instructors in
2. For instructors:

order to conduct computer science
courses at universities.

Creating an
assighment

Web-CAT provides a wizard-based
interface to instructors for setting up
programming assignments.

28

e Uploading a
student roster.

Web-CAT provides instructors with the
ability to upload a list of students that
are enrolled-in a particular course.

e Viewing grades

Web-CAT provides the instructor with
the ability to view grades of students,
either individually or as a class.

e Add Comments

Instructors can add their own
comments and point deductions to any
source file line, enter overall comments
on the entire assignment, and view or
modify total deductions

3. For students:

Web-CAT serves as an online
submission system for students and
allows them to view reports for already
submitted assignments.

e Submitting an
assignment

Web-CAT allows students to submit an
assignment for automatic grading and
feedback.

e Viewing reports

Web-CAT allows students to view
reports for already submitted
assignments using a wizard-based
interaction.

e E-mail
notification

Students get automatic e-mail
notification when their assignment
grading has been completed

3. Submit
Prog-tst

The Submit program is used to submit assignment files to the

instructor.

1. For Student:

e Displaying menu

Menu of choices indicating which faculty
member and for which course the files
will be submitted.

e Menu of
assighments

The student is provided with a menu of
assignments available for submission,
specific to course-id.

e Submit
assignment

After the assignment is specified, the
student is prompted for the names of
the files to be submitted. After
specifying the file name(s), the student
then must respond to an honour pledge
declaration and indicate they have
received no unauthorized assistance in
completing the assignment. If they fail
to do so, the submit aborts.

29

PDF report

The student is provided with a PDF
report. The report provides the
submission information (student name,
account, date, assignment, late
penalty, honour pledge, etc) and a
listing of the submitted source files.

For I nstructor:

3. Submit
Prog-tst

Specify a due
date

The instructor can specify a due date
and a schedule of penalties for late
submissions, a "late penalty" (if any) is
calculated based on the time of
submission.

Create file
directory

- The submitted files are copied to a
directory that is created to store the
submitted material, the created
directory and its contents all belong to
the instructor and are not accessible to
the student.

- Since each submission results in a
new directory being created,
subsequent submissions do not
overwrite earlier ones.

Compile files

- The Submit program compiles all
submitted source code files (the
instructor's copy).

- If the program fails to compile, an
error message is output and the
submission aborts.

Test files

- If the program compiles, the
executable that is produced is supplied
to the Prog-tst program. For a number
of test cases, the actual output
generated by the user's executable is
compared to the correct output.

- If the student's executable fails a test,
an error message is output and the
submission aborts.

- If the executable passes all the tests,
a success message is output and the
instructor's directory containing the
submission is marked as correct.

Generate report

- In addition to the onscreen messages,
Submit generates a submission report.

- A copy of the report in text format is
created both in the instructor's
submission directory and in the working
directory of the student.

- If the program compiled correctly, a
summary of the submit output is
included. If a test failed, detailed
information on that test is included.

30

3.1

Chapter 3: System Analysis

The Automated Testing Tool for Students’ Program Go als and
Objectives
Increase the students testing skills by allowing st udents to understand
and submit their own test cases and data along with their programs.

Students are not rewarded for performing testing of their own implementations. As
a result, students perform less testing on their own. Instead, they rely on

instructor provided sample data and ignore the possibility of varying scenarios.

Using the automated tool will encourage more testing thinking and planning from

the student and as a result better testers in the future.

Reduce the amount of educators’ works and time spen t on assessment
process.

Instructors are overloaded with work while teaching computer courses. It would be
difficult for them to provide extensive feedback on every student program
especially if the class size is a large number. The lack of appropriate feedback and
assessment of student programs could serve to be a major difficulty to include
software testing in the classroom.

Using the automated testing tools will help the educators in the assessment

process and reduce the amount of work needed to teach testing.

Improve the introductory Java co urse quality by enhancing the
assignments form to meet the automation requirement S.

Students will practice using an enhanced version of assignments. The assignment
descriptions and assessment principles are specified in a detailed form to be
prepared for automatic assessment. This will involve students in more testing; as a

result they will be aware of how to test their codes while writing their programs.

Observe the collected data and investigate the resu Its of using such
system

The results of using the tool and both the students grades and the collected
students’ background can be used to analyze the impact of automaton on both

students and instructors.

31

3.2 The Automated Testing Tool for Students’ Program Fe atures and
Specifications
Actor Use Case Description Priority Notes
» Instructor:
Instructor creates assignment
and fills information:
- Assignment name Course is
1. Create - Assignment description High created by
Assignment - URL 9 another
- Upload assignment files system.
- Grade
- Max Test files
2.' St - Edit assignment information. Normal
Assignment
. - Assignment due date should be
3. Specify a e)
specified and if any penalty to
due date
be calculated.
Instructor
- According to the assignment has two
4. Close due date, assignment will be options
; . Low .
Assignment closed automatically or either

manually by instructor.

manually or
automatically

5. Delete

- Instructor can delete an

Assignment assignment. Lo
6. Upload - Instructor upload model answer
Model that student can view after Normal
Answer assignment is closed.
7. Test - Instructor can use the tool to _
> I nstructor: assignment test the assignment. High
files (instructor copy)
- The tool compiles all
8. Compile submitted source code files, if
s the program fails to compile, | Normal
an error message is output
and the submission aborts.
- Instructor confirms student
9. Register registration. Lo
Student - After instructor confirmation,

the student is able to use the
tool.

32

10. View

Many views

Student View student’s testing High | options could
Results results. be made.
Failed testing
Instructor grades the records could
11. Grade students according his _ be graded by
Student recorded results, non High viewing the
submitted assignment will be code and
graded zero automatically. test files.
12. Add Instructor can add comments High
Comment about the student code.
13 View Import to
Students Instructor views all students’ High excel option
Grades grades of all assignments. can be
added.
To prevent
14 Delete At the end of course students to
All Students instructors delete all Low | use the tool
registered students. after course
ends.
To protect
Student him to use the tool. results.
» Student:
Student apply to use the tool User Name is
by entering his information: the student
Name ID, GPA and
> Student: 1. Sian U User Name is the Student ID Low previous
; - 19 P Password grades for
GPA statistical
Grades in previous analysis
programming courses purposes.
Login to be able to use the
2. Sign in tool only confirmed and Low
’ registered students can use
the tool.
Each student has his own Previous
3 Create directory submission
di.rectory Each submission has its High will not be

subdirectory under student
directory

over write on
them.

33

4. Display
menu

Student selects assignment
number where she will
submit her program.

High

5. Submit
assignment
files

Student is allowed to upload
test files according to the
assignment test files
assigned limit.

Student can upload files for
only opened assignments.

High

6. Delete
assighment
files

Student deletes uploaded
files to upload another set of
files.

If files were deleted all
recorded tests results for the
assignment will be deleted.

Student can delete files for
only opened assignments.

Normal

7. Compile
files

The tool compiles all
submitted source code files, if
the program fails to compile,
an error message is output
and the submission aborts.

Normal

8. Run Test

Student run tests after
uploading files

High

9. Save
Results

If test passes the student can
save the results and a new
record is added to be viewed
by instructor.

Student can save failed tests,
If due date was reached for
example.

Student can save results for
only open assignments.

Limited number of savings
assigned by instructor.

High

Instructor
could grade
student for
failed tests
results by
viewing the
student
program
code and
test files.

10. Delete
Results

If test fail the student can
delete the test results and try
again.

Student can delete the
passed test results to change
his code for example.

Student can delete results for
only open assignments.

High

11. View
Results

Student can view his results.

Normal

34

12. View

Student can view his grade

Grade given by instructor. NenmEL
13. View .
View Instructor comment on
I nstructor Low
student code.
Comments
14. E-mail Stu_dents .get_automat|c e-
. . mail notification when their Low
notification

assignment grading has been
completed.

35

3.3

Automated Testing Tool For Students’ Program Archit ecture:

Automated Testing Tool for Students’ Program is a web-based system with
three tires architecture:
1. Client Browser Tire:
Interface of the client where the clients interact with system and it is capable
to send and receive requests to and from the server.
2. Web Server Tire:
All java classes and testing are placed in this tire and it is capable to serve
HTML pages to be viewed by the client, and handle their requests.
3. Database and Files Server Tire:

This tire holds submitted data, where files server holds the submitted files;
the database holds the related user information such as grades, results...Etc.

Client Web
browser

Http
Request/Response

Web
Server

Database

Figure 3 - Automated Testing Tool for Students’ Program Architecture

36

3.4 Project Plan:

March April May | June July August | September October November | December

Months
2007

Tasks

Literature Review q

System Analysis ﬂ

System Design]

|mp|ementation —

Testing —

I mpact —

Evaluation

Documentation W

37

3.5 Java Testing Tools

e List of Available Tools

Java Testing Tool

Description

URL

1. JUnit

JUnit is a regression testing framework written by Erich Gamma and Kent Beck. It is used by the
developer who implements unit tests in Java. JUnit is Open Source Software.

JUnit

2. Cactus

Cactus is a simple test framework for unit testing server-side java code e.g. Servlets. The intent
of Cactus is to lower the cost of writing tests for server-side code. It uses JUnit and extends it.

Cactus

3. Abbot

The Abbot framework is a Java library for GUI unit testing and functional testing. It provides
methods to reproduce user actions and examine the state of GUlI components. The framework
may be invoked directly from Java code or accessed without programming through the use of
scripts. Abbot is a friendly JUnit extension for GUI testing

4. Jameleon

Jameleon is an acceptance-level automated testing tool that separates applications into features
and allows those features to be tied together independently, creating test-cases. These test-cases
can then be data-driven and executed against different environments. Even though it would be
possible to write unit tests using Jameleon, Jameleon was designed with integration and
acceptance-level testing in mind.

Jameleon

5. TestNG

TestNG is a testing framework inspired from JUnit and NUnit but introducing some new
functionality that make it more powerful and easier to use, such as: Flexible test configuration. -
Default JDK functions for runtime and logging (no dependencies). - Powerful execution model-
Supports dependent methods.

TestNG

38

TESTARE is a testing framework that aims to simplify the test development process for
distributed enterprise JAVA applications. It tries to achieve this goal by focusing on two main
directions:

6. TESTARE TESTARE
* provide straightforward and easy to use "in container" testing capabilities
* provide native support for test environment management.
Jemmy is a JavaTM library that is used to create automated tests for Java GUI applications. It

7 Jemm contains methods to reproduce all user actions which can be performed on Swing/AWT

: y components (i.e. button pushing, text typing ...). JemmyTest is a program written in Java which Jemmy

uses the Jemmy API to test applications.
Jacareto is a capture & replay tool for programs written in Java. You can capture actions on
applications and replay them later on (like macros). Jacareto can be used for many purposes:

8. Jacareto * GUI tests Jacareto

* Creation of animated demonstrations
* Creation of macros

9. JTR Java Test
Runner

JTR (Java Test Runner) is a framework meant for fastening the building of both complex and
simple test environments. It is based on concepts such as Inversion of Control, and is ready for
EJB and JMS testing. The JTR 2.0 framework will give you the chance to code only the testing
logic. All the boring middleware-related tasks (connecting to Connection Factories, opening
connections, sharing connections, opening sessions, handling exceptions, retrieving administered
objects) are carried out by the JTR 2.0 runtime on your behalf according to what you have stated
in the jtr.xml configuration file.

JTR Java Test

Runner

10. Jetif

The Jetif is a regression test framework in pure Java. It provides a simple and flexible
architecture for Java unit testing and functional testing, and used for testing in both individual
and enterprise software development. It's easy to use, but powerful, and with some important
features for enterprise software testing. This project was inspired by JUnit, JTestCase and
TestNG. There are several ideas come from JUnit, for example the assertion mechanism and
TestListener concept, so it's easy to move to Jetif from JUnit.

» Selected Testing Tool — JUnit

39

References:

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Ala-Mutka, K. and Jarvinen, H. “Assessment Process for Programming
Assignments”, In Proceedings of the IEEE international Conference on

Advanced Learning Technologies, |EEE Computer Society, 2004, 181-185.
|EEE Xplore

Bach, J. “Test Automation Snake Oil”. In Proceedings of the 14th International
Conference and Exposition on Testing Computer Software. Windows Tech
Journal. 1999. PDF

Barriocanal, E. G., Urban, M. S., Cuevas, |. A., and Pérez, P. D. “An
experience in integrating automated unit testing practices in an introductory
programming course”, SIGCSE Bull, 34, ACM Press, 2002, 125-128. ACM

Beck, K. "Aim, Fire," |EEE Software, vol. 18, no.5, 2001, pp.87-89.
|EEE Xplore

Berner, S., Weber, R., and Keller, R. K. “Observations and lessons learned
from automated testing”. In Proceedings of the 27th international Conference
on Software Engineering, 2005, pp.571-579. ACM

David, J."Web-based Grading: Further Experiences and Student Attitudes”, In
Proceedings of ASEE/IEEE Frontiers in Education Conference, |IEEE, 2005, p

18-23. |EEE Xplore.

Douce, C., Livingstone, D., and Orwell, J. “Automatic test-based assessment
of programming: A review”, Journal on Educational Resources in Computing,
2005. ACM

Dustin, E., Rashka, J. and Paul, J. Automated Software Testing: Introduction,

Management, and Performance. Addison Wesley Professional, 1999. HTML

Edvardsson, J. “A survey on automatic test data generation”. In Proceedings
of the Second Conference on Computer Science and Engineering in Linkoping,
1999, pp.21-28. PDF

Edwards, S. H. "Using software testing to move students from trial-and-error
to reflection-in-action”, In Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, ACM Press, 2004, pp.26-30,
ACM

Edwards, S. H. “Improving student performance by evaluating how well

students test their own programs” J. Educ. Resour. Comput. 3, 2003. ACM

Harris, J. A., Adams, E. S., and Harris, N. L. “Making program grading easier:
but not totally automatic” J. Comput. Small Coll. 20, 2004, 248-261. ACM

40

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Isaacson, P. C. and Scott, T. A. “Automating the execution of student
programs” SIGCSE Bull. 21, 2, 1989, 15-22. ACM

Jackson, D. and Usher, M. “Grading student programs using ASSYST", In
Proceedings of the Twenty-Eighth SIGCSE Technical Symposium on Computer
Science Education, ACM Press, 1997, 335-339. ACM

Janzen, D. S. and Saiedian, H. “Test-driven learning: intrinsic integration of
testing into the CS/SE curriculum”, In Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education, ACM Press, 2006,
pp.254-258. ACM

Korel, B. and Al-Yami, A. M. “Automated regression test generation”, In
Proceedings of the 1998 ACM SIGSOFT international Symposium on Software
Testing and Analysis, ACM Press, 1998, pp.143-152. ACM

Li, k. and Wu, M. Effective GUI Testing Automation: Developing an Automated
GUI Testing Tool. John Wiley & Sons, 2004. PDE

Link, J. Unit Testing in Java: How Tests Drive the Code, Morgan Kaufmann,
2003.

Massol, V. and Husted, T. JUnit in Action. Manning Publications, 2003. PDF

McGee, P. and Kaner, C. “Experiments with high volume test automation”,
SIGSOFT Soft. Eng. Notes 29, 5, 2004, pp.1-3. ACM

Myers, G.J. The Art of Software Testing, John Wiley & Sons, 1976 PDF

Niemeyer, G. and Poteet, J. Extreme Programming with Ant: Building and
Deploying Java Applications with JSP, EJB, XSLT, XDoclet, and JUnit. Sams,
2003. HTML

Reek, K. A. “The TRY system -or- how to avoid testing student programs”, In
Proceedings of the Twentieth SIGCSE Technical Symposium on Computer
Science Education, ACM Press, 1989, 112-116. ACM

Shepard, T., Lamb, M., and Kelly, D. “More testing should be taught”,
Commun. ACM 44, 2001, pp.103-108. ACM

Sheard, J., Dick, M., Markham, S., Macdonald, I., and Walsh, M. “Cheating
and plagiarism: perceptions and practices of first year IT students”, SIGCSE
Bull, 2002, 183-187. ACM

Srivastava, A. “Test Automation and Software Development”, Technology
Review# 2002-07. 2002. Tata Consultancy Services. PDF

41

[27]

(28]

[29]

[30]

[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]

Snyder, R. M. "Teacher specification and student implementation of a unit
testing methodology in an introductory programming course”, J. Comput.
Small Coll. 2004, pp.22-32. ACM

Stephen H. “Teaching software testing: automatic grading meets test-first
coding”, In Companion of the 18th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, ACM
Press, 2003, pp.318-319. ACM

Xie, T. “Improving Effectiveness of Automated Software Testing in the
Absence of Specifications”, Doctoral Thesis. University of Washington, 2005.

|EEE Xplore

Yang, Q., Li, J. J., and Weiss, D. “A survey of coverage based testing tools”,
In Proceedings of the 2006 international Workshop on Automation of Software
Test, ACM Press, 2006, pp.99-103

WBGP: http://ace.cs.ohiou.edu/~juedes/wbgp/wbgp.html

Web-Cat: http://web-cat.cs.vt.edu/

JUnit: http://www.junit.org/

Abbot: http://abbot.sourceforge.net/

Jameleon: http://jameleon.sourceforge.net/index.html

TestNG: http://www.beust.com/testng/

TESTARE: https://testare.dev.java.net/

Jemmy: http://jemmy.netbeans.org/

JTR Java Test Runner http://jtrunner.sourceforge.net/

Jetif: http://jetif.sourceforge.net/index.php

42

