
1

King Saud University
College of Computers and Information Sciences

Department of Computer Science
2nd Semester, 1427/1428H

DDeevveellooppmmeenntt ooff aann AAuuttoommaatteedd TTeesstt iinngg
TTooooll ffoorr SSttuuddeennttss’’ PPrrooggrraammss

RReeppoorrtt ((PPaarrtt 11))

SSuubbmmiitttteedd bbyy::

Alia Bahanshal - ID: 425221329

abahanshal@yahoo.com

SSuubbmmiitttteedd TToo::

Dr. Ghazy Assassa

SSuubbmmiissssiioonn DDaattee::

May 30, 2007

2

AA bb ss tt rr aa cc tt

There is a need to increase the quant ity and quality of the t reatm ent of

test ing in the curr iculum because 100% of inst ruct ion is spent on the

process of developing software, and very lit t le to how to test software.

Furtherm ore, inst ructors and teaching assistants are overburdened with

work while teaching courses and have lit t le t im e to devote to addit ional

assessment act ivit ies. On large courses, providing feedback on several

programming assignments requires autom at ic assistance. As in the

Com puter Science Departm ent at King Saud University they have 150

students enrolled in (CSC112) an int roductory java programming course

which requires a lot of works from the inst ructors and teaching assistants

to assess each student ’s work with the same standards. The obvious

benefits of using autom at ic assessm ent tool to assess the students

programs are object ivit y, consistency and speed of assessment .

This project aims to design and I m plem ent an autom ated black-box

(funct ional) test ing tool for student ’s programs in an int roductory Java

program m ing course and invest igate the impact of using automated

test ing tool in both students and educators.

3

AA cckk nn oo ww ll ee dd gg mm ee nn tt

To m y professor, Dr. Ghazy Assassa, thank you for m aking this project a

very valuable learning experience.

4

TTaa bb ll ee oo ff CCoo nn tt ee nn tt ss

Abst ract ..2

Chapter 1: I nt roduct ion ...5

1.1 I nt roduct ion ...5
1.2 Problem Statement ...6

Chapter 2: Literature Review ..7

2.1 I nt roduct ion to Software Test ing ...7
2.1.1 What I s Software Test ing? ...7
2.1.2 Level of Test ing ...7
2.1.3 Software Test ing St rategies ...8

2.2 I nt roduct ion to Automated Test ing ...9

2.2.1 What is Automated Test ing ..9
2.2.2 Automated Test ing Life Cycle Methodology ...9
2.2.3 Autom ated Test ing Environm ent ... 11
2.2.4 Autom ated Test ing Techniques.. 12
2.2.5 Manual Test ing Vs. Autom ated Test ing .. 14
2.2.6 Benefits of Autom ated Test ing ... 14

2.3 Autom ated Test ing Tools ... 16

2.3.1 A Survey of Coverage Based Test ing Tools... 16

2.4 Case Study: Autom ated Test ing in Courses ... 19

2.4.1 Challenges on programming courses .. 20
2.4.2 Assessing program m ing assignm ent ... 22
2.4.3 I ntegrate Software Test ing Throughout the Curr iculum .. 22
2.4.4 Test Driven Developm ent I n Courses.. 23
2.4.5 Test -dr iven learning (TDL) .. 24
2.4.6 Autom ated Grading and Assessm ent System s .. 24

2.5 Related Works .. 26

2.5.1 The Web-Based Grading Project (WBGP) .. 26
2.5.2 Web-CAT: A Web-based Center for Autom ated Test ing .. 27
2.5.3 Subm it and Progtst : ... 27
2.5.4 List of Previous Projects Features: ... 28

Chapter 3: System Analysis .. 31

3.1 The Autom ated Test ing Tool for Students’ Program Goals and Object ives.................. 31
3.2 The Automated Test ing Tool for Students’ Program Features and Specificat ions 32
3.3 Autom ated Test ing Tool For Students’ Program Architecture: ... 36
3.4 Project Plan: ... 37
3.5 Java Test ing Tools .. 38

References 40

5

CChh aa pp tt ee rr 11 :: II nn tt rr oo dd uu cc tt ii oo nn

1 .1 I nt roduct ion

Test ing is becom ing more important with the huge im provem ent in the software

developing because the programmers’ use of the GUI made software products more

complex and led to the developm ent of new test ing tools.

I n [Srivastava, 2002] the author explained that software test ing m ay be viewed as a

sub- field of software quality assurance but typically exists independent ly where

software process specialists and auditors take a broader view on software and its

developm ent , exam ine and change the software engineering process itself to reduce

the am ount of faults that end up in the code or deliver faster.

[Li, 2004] shows that perform ing computer software test ing can be done at different

levels early from unit test ing and moving on to integrat ion test ing, systems test ing

and acceptance test ing. During the early stages of the test ing cycle, the software

developer does most of the test ing and this act ivity is boring, tedious and uncreat ive.

Regardless of the methods used or level of formality involved the desired result of

test ing is a level of confidence in the software so that the developers are confident

that the software has an acceptable defect rate.

I n [Berner, 2005] the author shows a problem with software test ing that the num ber

of defects in a software product can be very large and bugs that occur infrequent ly are

difficult to find in test ing. A rule of thumb is that a system that is expected to funct ion

without faults for a certain length of t im e must have already been tested for at least

that length of t ime. This has severe consequences for projects to write long- lived

reliable software.

[Mayer, 1976] explains a common pract ice of software test ing that is performed by an

independent group of testers after the funct ionality is developed but before it is

shipped to the customer. This pract ice often results in the test ing phase being used as

project buffer to compensate for project delays. Another pract ice is to start software

test ing at the same moment the project starts and it is a cont inuous process unt il the

project finishes. Another common pract ice is for test suites to be developed during

technical support escalat ion procedures. Such tests are then maintained in regression

test ing suites to ensure that future updates to the software don't repeat any of the

known m istakes. I t is com m only believed that the earlier a defect is found the cheaper

it is to fix it .

6

Manual test ing was and st ill the known way for software test ing but it is also a very

highly cost ing one. I n [Dust in, 1999] the author shows that software project

managers and software developers today build applicat ions while facing the challenge

of doing so within an ever-shrinking schedule and with m inimal resources. As part of

their at tem pt to do more with less, organizat ions want to test software adequately,

but as quickly and thoroughly as possible. To accomplish this goal, organizat ions are

turning to autom ated test ing.

I n [Niemeyer, 2003] the authors showed num ber of benefits of the autom ated test ing

For one, the tests are repeatable so when a test is created, it can be run each t im e

the test ing process is launched. Autom at ing test ing reduces the fat igue of perform ing

test ing manually, which leads to more consistent results. Also, because the tests are

autom ated, they're easy to run, which m eans that they will be run m ore often. As new

bugs are discovered and fixed, tests can be added to check for those bugs, to ensure

that they aren't reint roduced. This increases the overall completeness of test ing.

To accomplish the test ing phase successfully we need qualified testers that will

perform all the test ing tasks or m onitor the test autom at ion. The first step to produce

fine testers starts from first years of educat ion according to [Shepard, 2001] which

showed that m ore test ing should be taught to CS students because they are not well

equipped to apply widely pract iced test ing techniques, and they are graduat ing with a

serious gap in the knowledge they need to be effect ive software developers. Even new

software engineering curr icula tend to be weak in software test ing because highly

effect ive pract ices such as software inspect ion and test ing are hardly taught at all, and

m any com puter science professors do not know or care what inspect ion is and why it

is valuable.

Furtherm ore, inst ructors and teaching assistants are overburdened with work while

teaching courses and have lit t le t im e to devote to addit ional assessm ent act ivit ies.

Using an autom ated test ing tool to test students program would benefit in both

reducing the am ount of assessment work on inst ructors and allow them to devote

m ore efforts and t im e on teaching test ing pract ices and techniques to produce good

quality testers in the future.

1 .2 Problem Statem ent

The object ive of this project is to design and develop an autom ated black-box

(funct ional) test ing tool for student ’s programs in an int roductory Java programming

course (CSC112) and invest igate the impact of using such tool in both students and

educators.

7

CChh aa pp tt ee rr 22 :: LL ii tt ee rr aa tt uu rr ee RRee vv ii ee ww

Many researches were made and papers were published in the test autom at ion topic.

The results from collect ing and studying these works are:

• Select ing this important topic.

• Understanding the scope of the proposed idea.

• I dent ifying the object ives via analyzing the opt im ist ic conclusions.

• The desire to experiment such experiences in our university.

2 .1 I nt roduct ion to Softw are Test ing

2 .1 .1 W hat I s Softw are Test ing?

[Myers, 1976] defines test ing as “ the process of execut ing a program or system with

the intent of finding errors.”

Other definit ions of test ing include: “Finding bugs in program s” , “Showing correct

operat ion of a program” , “Test ing is the process of establishing confidence that a

program or system does what it is supposed to do” .

Software test ing is the process used to help ident ify the correctness, com pleteness,

security, and quality of developed com puter software. Test ing is a process of technical

invest igat ion, performed on behalf of stakeholders, that is intended to reveal quality-

related informat ion about the product with respect to the context in which it is

intended to operate. This includes, but is not lim ited to, the process of execut ing a

program or applicat ion with the intent of finding errors.

2 .1 .2 Level of Test ing

There are four levels of software test ing. Each level builds on the last .

• Unit test ing tests the m inimal software component that can be tested.

[Barr iocanal, 2002]

• I ntegrat ion test ing exposes defects in the interfaces and interact ion between

integrated components.

• System test ing tests an integrated system to verify that it m eets its

requirements.

• Acceptance test ing allows the end-user or customer to decide whether or not to

accept the product .

8

2 .1 .3 Softw are Test ing St ra tegies

[Myers, 1976] explained two different test ing st rategies:

• Black- Box Test ing

Black box test ing takes an external perspect ive of the test object to derive test cases.

These tests can be funct ional or non- funct ional, though usually funct ional. The test

designer selects valid and invalid input and determ ines the correct output . There is no

knowledge of the test object 's internal st ructure.

This method of test design is applicable to all levels of software test ing: unit ,

integrat ion, system and acceptance. The higher the level, and hence the bigger and

more complex the box, the more we're forced to use black box test ing to sim plify.

• W hite- Box Test ing

White box test ing or logic-driven test ing (clear box test ing, glass box test ing or

st ructural test ing) uses an internal perspect ive of the system to design test cases

based on internal st ructure. I t requires programming skills to ident ify all paths

through the software. The tester chooses test case inputs to exercise all paths and

determ ines the appropriate outputs.

While white box test ing is applicable at the unit , integrat ion and system levels of the

software test ing process, it 's typically applied to the unit .

9

2 .2 I nt roduct ion to Autom ated Test ing

2 .2 .1 W hat is Autom ated Test ing

[Dust in, 1999] explains test autom at ion; it is the use of software to cont rol the

execut ion of tests, the comparison of actual outcom es to predicted outcom es, the

set t ing up of test precondit ions, and other test cont rol and test report ing funct ions.

Com m only, test autom at ion involves autom at ing a m anual process already in place

that uses a form alized test ing process, such process includes:

• Detailed test cases, including predictable "expected results" , which have been

developed from Business Funct ional Specificat ions and Design documentat ion.

• A standalone Test Environment , including a Test Database that is restorable to a

known constant , such that the test cases are able to be repeated each t ime there

are modificat ions made to the applicat ion.

2 .2 .2 Autom ated Test ing Life Cycle Methodology

I n [Dust in, 1999] the author discussed the autom ated test lifecycle methodology

which comprises six pr imary processes or components:

• Phase 1 : Decision to Autom ate Test ing

During this phase, it 's important for the test team to m anage autom ated test ing

expectat ions and to out line the potent ial benefits of autom ated test ing when

implemented correct ly. A test tool proposal needs to be out lined, which will be

helpful in acquir ing management support . Some of the issues that organizat ions

face when adopt ing autom ated test systems include those out lined below:

• Finding and hir ing test tool experts.

• Using the correct tool for the task at hand.

• Developing and implement ing an automated test ing process, which includes

developing autom ated test design and developm ent standards.

• Analyzing various applicat ions to determ ine those that are best suited for

autom at ion.

• Analyzing the test requirem ents to determ ine the ones suitable for autom at ion.

• Training the test team on the autom ated test ing process, autom ated test

design, developm ent , and execut ion.

• I nit ial increase in schedule and cost .

10

• Phase 2 : Test Tool Acquisit ion

This phase guides the test engineer through the ent ire test tool evaluat ion and

select ion process, start ing with confirm at ion of m anagem ent support . Since a tool

should support most of the organizat ions' test ing requirem ents, whenever feasible

the test engineer will need to review the system 's engineering environm ent and

other organizat ional needs and com e up with a list of tool evaluat ion cr iter ia.

• Phase 3 : Autom ated Test ing I nt roduct ion Process

This phase out lines the steps necessary to successfully int roduce autom ated

test ing to a new project team . Test process analysis ensures that an overall test

process and st rategy are in place and are m odified, during the test process

analysis, techniques are defined. Best pract ices are laid out , such as conduct ing

perform ance test ing during the unit - test ing phase. The test tool considerat ion

process includes steps that invest igate whether incorporat ion of automated test

tools that have been brought into the com pany without a specific project in m ind

now would be beneficial to a specific project .

• Phase 4 : Test Planning, Design, and Developm ent

The test planning stage represents the need to review long–lead- t im e test

planning act ivit ies. During this phase, the test team ident ifies test procedure

creat ion standards and guidelines. The test design com ponent addresses the need

to define the number of tests to be perform ed, the ways that test ing will be

approached (paths, funct ions) , and the test condit ions that need to be exercised.

Test design standards need to be defined and followed. For autom ated tests to be

reusable, repeatable, and maintainable, test development standards need to be

defined and followed.

• Phase 5 : Execut ion and Managem ent of Tests

At this stage, the test team has addressed test design and test developm ent . Test

procedures are now ready to be executed in support of exercising the applicat ion

under test .

• Phase 6 : Test Program Review and Assessm ent

Test program review and assessment act ivit ies need to be conducted throughout

the test ing lifecycle, to allow for cont inuous improvem ent act ivit ies. Throughout

the test ing lifecycle and following test execut ion act ivit ies, m et r ics need to be

evaluated and final review and assessment act ivit ies need to be conducted to allow

for process im provem ent .

11

2 .2 .3 Autom ated Test ing Environm ent

2 .2 .3 .1 Planning for Test Autom at ion

The planning or the decision for autom ated test ing is the first com ponent to establish

the autom ated test ing environm ent as m ent ioned in the previous (ATLM) .

2 .2 .3 .2 Autom at ic Test Generat ion

[Edvardsson, 1999] explains how to reduce the high cost of manual software test ing

and at the same t ime increase the reliabilit y of the test ing processes by autom at ing it

and one of the most important com ponents in a test ing environment is an automat ic

test data generator, he proposed three different m ethods for generat ing test data:

random , path-oriented, and goal-or iented test data generat ion.

• Random Test Data Generat ion

Generate input values for any type of program where a data type such as integer,

st r ing, or heap is just a st ream of bits. For exam ple, for a funct ion taking a st r ing as

an argum ent we can just random ly generate a bit st ream and let it represent the

st r ing. This method is the simplest one of generat ion techniques.

• Goal- Or iented Test Data Generat ion

I n this m ethod the generator finds input for any path, which reduces the r isk of

encountering relat ively infeasible paths and provides a way to direct the search for

input values as well. I nstead of let t ing the generator generates input that t raverses

from the ent ry to the exit of a program . The goal-or iented approach is m uch st ronger

than random generat ion.

•• Path- Or iented Test Data Generat ion

This method does not provide the generator with a possibility of select ing among a set

of paths, but just specific one. Successively this leads to a bet ter predict ion of

coverage. On the other hand it is harder to find test data. Path-oriented generat ion is

st rongest among the three approaches.

2 .2 .3 .3 Logging Autom ated Test Results

Dealing with the test results is a very important concern, it is much more important

than the test automat ion itself. A proper archiving and logging is required to prevent

the failure of the whole test ing process.

12

2 .2 .4 Autom ated Test ing Techniques

2 .2 .4 .1 Test - dr iven developm ent

[Stephen, 2003] explains Test-driven development ; TDD is a new technique that

involves repeatedly first writ ing a test case and then implement ing only the code

necessary to pass the test . Test -dr iven development gives rapid feedback. Also in

[Edwards, 2004] authors show some benefits of the test -dr iven developm ent

techniques: it can help build software bet ter and faster, I t offers more than just

simple validat ion of correctness, but can also drive the design of a program. By

focusing on the test cases first , one m ust imagine how the funct ionality will be used

by clients. Therefore, the program m er is only concerned with the interface and not the

implementat ion. This benefit is complementary to Design by Cont ract as it approaches

code through test cases rather than through mathemat ical assert ions or

preconcept ions. The power test -driven development offers is the abilit y to take small

steps when required. I t allows a program m er to focus on the task at hand as the first

goal is to m ake the test pass. Except ional cases and error handling are not considered

init ially. Tests to create these ext raneous circumstances are implemented separately.

Another advantage is that test -dr iven developm ent , when used properly, ensures that

all writ ten code is covered by a test . This can give the program m er, and subsequent

users, a greater level of t rust in the code.

2 .2 .4 .2 Autom ated Regression Test ing

[Korel, 1998] explains regression test ing which involves test ing the modified program

in order to establish the confidence that the program will perform according to the

modified specificat ion. I n the development phase, regression test ing m ay be used

after the detect ion and correct ion of errors in a tested program . Also, the software

m aintenance cost m ay be significant ly reduced if an autom ated regression test ing was

adopted rather than the t ime consum ing and expensive t radit ional regression test ing.

[Xie, 2005] shows that in com paring the actual outputs of two program versions

regression test ing is concerned in exposing the internal behavioral differences during

the program execut ion, which can be used to t rack the quality of program output and

not only test ing the correctness of it .

13

- There are two types of regression test ing:

1 . Progressive regression test ing: performed when the modified version of the

software involves a change in the specificat ion.

2 . Correct ive regression test ing: performed when the modificat ion does not

involve a change in the software specificat ion.

2 .2 .4 .3 Autom ated GUI test ing

[Li, 2004] explained GUI software test ing as the process of test ing a product that uses

a graphical user interface, to ensure it meets its writ ten specificat ions. This is normally

done through the use of a variety of test cases with most software now driven by

graphical user interfaces of such complexity that m anual test ing is now a t im e-

consum ing and cost ly task; there is an overwhelm ing case for autom at ion.

GUI Automat ing test execut ion is norm ally just ified based on the need to conduct

funct ional regression tests. I n organisat ions where development follows a Rapid

Applicat ion Developm ent (RAD) approach or where development is messy, regression

test ing is difficult to implement at all - software products may never be stable enough

for a regression test to m ature and be of value. A system at ic approach to test ing GUI s

and using tools select ively for specific types of tests can be adopted and tools can be

used to find errors during the early test stages.

• Elem ents of Autom ated GUI Test ing

• A process

• A GUI Test Plan

• A set of support ing tools

2 .2 .4 .4 H igh Volum e Test Autom at ion (HVTA)

[McGee, 2004] has presented HVTA techniques as the automated execut ion and

evaluat ion of large num bers of tests, for the purpose of exposing funct ional errors that

are otherwise hard to find.

By using the HVTA techniques, the reliabilit y of software that works for long t im e with

out stopping is increased because the abilit y for this technique to find specific types of

errors much bet ter than most t radit ional test techniques. High volum e autom ated

test ing has been used to qualify safety-cr it ical software, such as air t raffic cont rol

system s, medical heart m onitors, and telephone system s.

14

2 .2 .5 Manual Test ing Vs. Autom ated Test ing

I n [Berner, 2005] the authors found that m ost new defects is detected by the manual

tasks not the automated ones because 60% of the bugs are found during an

autom ated test ing effort and 80% are found during the development of the tests. I n

[Korel, 1998] authors showed that automated funct ional tests can be used for

regression test ing, I f an organizat ion is running the same manual regression tests

repeatedly, then the autom ated tests can replace som e of that effort , but they also

add the effort to m aintain the tests, which is somet imes more than the work required

to just running the tests manually. Some of the effort means that test failures from an

autom ated test run st ill m ust be analyzed manually. Also, any part of the process of

provisioning and set t ing up the m achine to run the tests, kicking off the test run, and

babysit t ing it along the way that isn't automated will st ill require manual at tent ion.

I n [Srivastava, 2002] the author showed that the test ing process will be most

benefited if one has an opt im um m ixture of automated and m anual tests. The

autom ated tests should usually be those, which cover the most important features of

the product and are likely to be executed in all the regressions. Autom ated and

manual tests must coexist to improve the overall test ing product ivity. I t is not possible

to autom ate all test suites. Some tests cannot be autom ated because the tool or

test ing framework does not support autom at ion. For exam ple, with a console- test ing

tool, the automat ion of GUI tests will not be possible. There m ight be other tests,

whose autom at ion is not possible because the product under test requires som e

m anual hardware intervent ion to execute those tests, or the whole autom at ion is not

cost -effect ive which m ight require enormous amounts of the developers’ t ime for

automat ion/ maintenance and m ight test a small, not very important feature of the

product under test .

2 .2 .6 Benefit s of Autom ated Test ing

Software test ing accounts for 50% of the total cost of software developm ent . I n order

to reduce the high cost of m anual software test ing researchers and pract it ioners have

t r ied to automate it . I n [Niemeyer, 2003] the authors listed many benefits of

autom ated test ing, for one, the tests are repeatable, so when a test is created it can

be run each t im e the test ing process is launched. Autom at ing test ing reduces the

fat igue of perform ing test ing manually, which leads to more consistent results. Also,

because the tests are automated, they're easy to run, which m eans that they will be

run m ore often. As new bugs are discovered and fixed, tests can be added to check for

15

those bugs, to ensure that they aren't reint roduced. This increases the overall

com pleteness of test ing.

Test ing is a repeatable process and autom ated test ing achieves an important part of

the test ing process by making it possible to conduct regression test ing, to retest the

sam e scenario again.

Autom at ing the process m aintains consistency from one run of the test to the next ,

regardless of how much t im e passes between the two runs of the tests or who is

execut ing the tests because consistency issues are easiest to observe in teams with

mult iple testers and developers, but even a single tester would rarely conduct the

same tests the same way each t ime.

Autom ated test ing use self-docum ent ing system, which is the best kind of

docum entat ion which does not have to be writ ten and yet is guaranteed to be correct .

By autom at ing the test ing process, the computer will usually execute the test ing

process in less t ime than it takes a tester to perform manually. Again, manual test ing

has its place; the advantage of automated test ing is that it can easily catch many of

the problems before manual test ing even begins.

The benefits of autom ated test ing are:

• I s a repeatable process

• Uses a consistent approach

• Follows a docum ented process

• Frees up developer-hours for m ore profitable tasks

• I s expandable and flexible, with changes in code propagated to the test ing

procedure faster and more efficient ly

• Negates the fat igue factor as development deadlines approach because automated

tests will elim inate the st ress and workload of manual test ing on developers

• Produce a reliable system

• I m prove the quality of the test effort .

• Reduce test effort and m inim ize schedule.

Some drawbacks are that some features don't easily lend them selves to autom ated

test ing. For exam ple, som et im es autom at ion- test ing software can be used to test

complex GUI applicat ions, but often these applicat ions must be tested by hand.

16

2 .3 Autom ated Test ing Tools

2 .3 .1 A Survey of Coverage Based Test ing Tools

I n [Yang, 2006] the authors perform ed a survey that studies and compares 17

coverage-based test ing tools.

The study includes com parison of three features:

• Code coverage m easurem ent

• Coverage measurement cr iter ia

• Autom at ion and report ing

• Code coverage m easurem ent

All tools included in this survey have coverage measurement capabilit y, but may apply

only to a lim ited set of program m ing languages, som e to C/ C+ + only, som e to Java

only, some to both, and some to other languages such as FORTRAN, COBOL, or

JavaScript . Tools covered in the survey are listed below:

 C/ C+ + Java Other

Agitar X

Bullseye X

Clover X .net

Cober tura X

CodeTest X

Dynam ic X

EMMA X

eXVantage X X

gcov X

I nsure+ + X

I nte l X

JTest X .net

JCover X

Koalog X

Pur ifyPlus X X Basic, .ne t

Sem ant ic
Designs

X X
C# , PHP,
COBOL,

PARLANSE

TCAT X X

 Table1 : Coverage Tools and the Languages to Which They Apply

17

•• Coverage m easurem ent cr iter ia

Picking the r ight measurement requires balancing usabilit y with thoroughness. Some

tools provide various levels of code coverage informat ion. There is a large variety of

coverage m easurem ent cr iter ia: statem ent coverage (line coverage) , decision coverage

(branch coverage) , path coverage, funct ion/ method coverage, class coverage and so on.

Table 2 gives a list of tools with their coverage measurem ent cr iter ia.

 Table2: Levels of Covera ge Measurement Provided B y Tools

18

• Autom at ic Test Generat ion and Report ing

Another important feature for comparison is autom at ion; autom at ion of test ing process

includes m any steps, such as test case generat ion, test execut ion, and test oracles.

Another important automat ion area is test generat ion, which is more t ight ly linked with

code coverage. None of the tools in our list can generate test cases for C/ C+ + code, but

Parasoft , Agitar, and eXVantage claim the capability of generat ing Java test cases

autom at ically. Parasoft has its patented test case generat ion technology. Agitator

provides a certain level of automat ion by combining test suite generat ion and execut ion.

Besides automat ion, a fr iendly graph interface is also an important feature for

comparison. The user interface can be a decisive element for a tool’s usabilit y. The first

impression of a software tool is very important to users in their tool select ion. There are

two aspects of the user interface in this case: deployment and report generat ion.

Som e tools have both a GUI version and a batch m ode to suit the requirem ents of

different users. One part of the GUI display or the output of the batch mode is the

coverage report . Most commercial products include sophist icated report generat ion

com ponents, som e of which are graph-based and som e file-based.

See table 3 for a list of report formats.

Table 3: Tool Reporting Formats

19

2 .4 Case Study: Autom ated Test ing in Courses

With the rapid evolut ion of com puters and inform at ion technology, com puter science has

gained a significant role in the technology educat ion. The basics of computer science are

needed in several curr icula.

I n [Douce, 2005] the authors showed that programming problems and assignments

are considered essent ial elements of software engineering and computer science

educat ion and it is usually incorporated to the int roductory studies. Programming

assignments can help students become fam iliar with the at t r ibutes of modern

program m ing languages, becom e acquainted with essent ial tools, and to understand

how the principles of software development and design can be applied. The

assessment of these assignments places significant dem ands on the inst ructor ’s t im e

and other resources. An automated tools and ut ilit ies can be adopted to simplify the

tasks that both inst ructor and student had to carry out so that the assignm ent could

be assessed autom at ically.

I n [Snyder, 2004] the author explained one way to improve the confidence that a

program does what it is supposed to do, both from the student point of view and from

the teacher point of view, is to use test cases. But , for beginning students to use a

test ing methodology, the methodology must be fair ly simple and consistent from one

program to the next . Although the programming model used has input com ing from

the keyboard or an input text file, there is another source of input , and that is input

that is embedded in the program itself.

I n [Shepard, 2001] the authors showed that less than 50% of undergraduate

curr iculum is devoted to test ing issues, and this percentage, and resultant depth of

understanding, should increase by providing the students with an understanding of:

• The broad issues of test ing.

• The proper places for test ing act ivit ies in software processes.

• How to plan and design good test st rategies.

• How to m inim ize test ing.

I n [Edwards, 2004] the author showed that m any com puter science educators have

been looking for an effect ive way to improve the coverage of software test ing skills

that undergraduates receive. So, the t im e devoted to test ing act ivit ies in indust ry will

be reduced as a result of bet ter design and test ing pract ices they will have.

20

2 .4 .1 Challenges on program m ing courses

I n [Ala-Mutka, 2004] the authors int roduced som e typical problem s faced by students

and teachers and review exist ing assessm ent pract ices for program m ing.

1. Students have often difficult ies in building mental model of computer programs,

since it differs from the st ructure of natural language. Even when the students

have learned the program m ing concepts and languages, they m ay st ill lack the

skills for using this knowledge to create computer programs. Thus, if the students

are expected to learn to generate computer programs, it requires “hands-on”

experience with pract ical programming tasks.

2. Students don’t work on voluntary assignm ents, a possible reason for that is

somet imes they see programming assignm ents as separate tasks with

unnecessarily complex assessment requirements. A proposed solut ion is get t ing

the students involved with the pract ical components of the course required

frequent (online) evaluat ions, and they should either frequent ly subm it laboratory

assignments or be required to answer weekly quizzes about the contents of the

assignm ents.

3. Real-world applicat ions and software projects are so large that they cannot be

covered on one or even several courses, but st ill the students should learn skills

for working in such situat ions. Therefore, the complexit ies and pract ices of

professional work m ust be int roduced part ly in theory and part ly by assignm ents

that are simplif ied from real-world systems. For teachers, this means that they

need to plan the assignm ents very carefully. For students, this means that they

are required to learn and follow several basic rules, although the effects of their

neglect ions cannot always be shown in pract ice.

4. Novice programmers are usually not very good at evaluat ing their work, as even

incorrect programs can seem to work as desired, because complex requirements of

good and correct programming pract ices make the assignm ents hard to assess.

Also if he students have not yet learned the issues of “good program m ing” , they

cannot assess them effect ively either. For this reason, assessm ent and feedback

by an expert is always needed.

5. The work needed for giving good feedback places heavy workload for teachers.

also the issues of assessment object ivity, consistency and speed are hard to take

care of. These problems become emphasized on large courses, where several

tutors are needed for the assessment work.

21

6. Another widely recognized problem is cheat ing. Since computer programs are in

elect ronic form , they are easy to copy. I n [Sheared, 2002] the authors had

concerned results in their study of I T students’ at t itudes to cheat ing at two

universit ies. 34% of the respondents adm it ted that they had copied a m ajority of

an assignment from a fr iend. 53% had collaborated on an assignment that was

meant to be completed individually. This fact needs to be taken into account for

ensuring students’ learning.

• Challenges to adopt ing softw are test ing pract ices in assignm ents:

[Edwards, 2004] stated five perceived roadblocks to adopt ing software test ing

pract ices in assignm ents:

1. Software test ing requires experience at programming, and may be something

int roductory students are not ready for unt il they have m astered other basic skills.

2. I nst ructors just do not have the t im e (in term s of lecture hours) to teach a new

topic like software test ing in an already overcrowded course.

3. The course staff already has its hands full assessing program correctness—it may

not be feasible to assess test cases too.

4. To learn from this act ivity, students need frequent , concrete feedback on how to

improve their perform ance at many points throughout their developm ent of a

solut ion, rather than just once at the end of an assignment . The resources for

rapid, thorough feedback at mult iple points during program writ ing just are not

available in most courses.

5. Students must value any pract ices we require alongside programming act ivit ies. A

student must see any ext ra work as helpful in complet ing working programs,

rather than a hindrance imposed at the inst ructor ’s desire, if we wish for students

to cont inue using a technique faithfully.

By combining a suitable test ing technique with the r ight assessm ent st rategy, and

support ing them with the r ight tools, including an autom ated assessm ent engine, it is

possible to overcome all of these difficult ies.

22

2 .4 .2 Assessing program m ing assignm ent

One approach is to require students to test their own code in programming

assignm ents, and then assess them on this task as well as on the correctness of their

code solut ion. Two crit ical issues im m ediately ar ise one, what test ing approach should

students use? The approach must provide pract ical benefits that students can see, and

yet be simple enough to apply across the curr iculum. Second, how will students be

assessed on test ing tasks? I n part icular, if students must test their own code, and

then be graded on both their code and their test ing, how can we avoid doubling the

grading workload of faculty and teaching assistants while also providing feedback

frequent ly enough and specifically enough for students to improve their performance?

On large courses, providing feedback on several programming assignments requires

automat ic assistance. The obvious benefits of using autom at ic assessm ent tool to

assess the students program s are the object ivity, consistency and speed of

assessm ent .

Also the assignm ent descript ions and m easurement cr iter ia are carefully designed by

necessity, since they have to be programmed to the automaton, which will enhance

the quality of assignment and make them more object ive and the student will be able

to understand carefully the desired output and when students are provided with

clear ly stated object ives and assessment cr iter ia, they are able to cont rol their

learning process and become more self-directed learners.

I n the following sect ions some approaches and autom at ic assessm ent tools and

grading are presented.

2 .4 .3 I ntegrate Softw are Test ing Throughout the Curr iculu m

I n [Goldwasser, 2002] the authors presented an approach to teach student test ing

skills, students of a program m ing course were asked to subm it both an

implem entat ion and test set . Student 's grade was then dedicated on both the validit y

of a student 's program on others' test sets and on how that student 's test set

perform ed in uncovering flaws in others' program s.

The advantages of this approach are:

1. Compet it ive scoring provides a bit of br ight mot ivat ion to course work.

2. Students feel fully included in developing their own test sets.

3. Offers a wonderfully diverse environm ent for software test ing.

4. The scoring system provides a quant itat ive evaluat ion of both program validity

and test set quality that can be included as part of the overall grade.

23

2 .4 .4 Test Dr iven Developm ent I n Courses

[Stephen, 2003] explained how TDD can be pract iced in courses, I n TDD, student

writes one or more test cases before adding new code. The test cases capture what

behavior the student is at tem pt ing to produce. Then, the student writes new code,

these tests tell when the student has achieved his latest goal.

TDD is at t ract ive test ing approach for use in an educat ional set t ing for many reasons:

• I t is easier for students to understand and relate to than m ore t radit ional test ing

approaches.

• I t promotes incremental development , promotes the concept of always having a

“ running version” of the program at hand, and prom otes early detect ion of errors

int roduced by coding changes.

• I t direct ly combats the “big bang” integrat ion problems that many students see

when they begin to write larger programs, where test ing is saved unt il all the code

writ ing is complete.

• I t dramat ically increases a student ’s confidence in the port ion of the code they

have finished, and allows them to m ake changes and addit ions with greater

confidence because of cont inuous regression test ing.

• I t increases the student ’s understanding of the assignment requirements, by

forcing them to explore the gray areas in order to com pletely test their own

solut ion.

• I t also provides a lively sense of progress, because the student is always clearly

aware of the growing size of their test suite and how much of the required

behavior has already been completed. Most important ly, students begin to see

these benefits for them selves after using TDD on just a few assignm ents.

The tool support that is available for TDD is also important . TDD frameworks are

readily available, including JUnit for Java, and related XUnit frameworks for other

languages. Although these fram eworks are aim ed at professional developers, sim ilar

educat ional tool support is also becom ing available:

DrJava: which is designed specifically as a pedagogical tool for teaching int roductory

programming, provides built - in support to help students write JUnit -style test cases

for the classes they write,

BlueJ: an int roductory Java environm ent designed specifically for teaching CS1 also

provides support for JUnit -style tests. BlueJ’s JUnit support allows students to “ record”

simple object creat ion and interact ion sequences as JUnit -style test cases. Such tools

make it easy for students to write tests from the beginning, and also mesh nicely with

an objects- first pedagogy.

24

2 .4 .5 Test - dr iven learning (TDL)

I n [Janzen, 2006] the authors presented Test -dr iven learning (TDL) which is an

approach to teaching com puter program m ing that involves int roducing and exploring

new concepts through autom ated unit tests. TDL offers the potent ial of teaching

test ing for free, of improving programmer comprehension and abilit y, and of

improving software quality both in terms of design quality and reduced defect density.

TDL can be em ployed start ing in the earliest program m ing courses and cont inuing

through advanced courses, even those for professional developers. Further, TDL can

be applied in educat ional resources from textbooks to software docum entat ion.

Test -dr iven learning has the following object ives:

• Teach test ing for free

• Teach autom ated test ing fram eworks sim ply

• Encourage the use of test -dr iven developm ent

• I m prove student com prehension and program m ing abilit ies

• I mprove software qualit y both in term s of design and defect density

2 .4 .6 Autom ated Grading and Assessm ent System s

Unfortunately, inst ructors and teaching assistants are already overburdened with work

while teaching com puter science courses and have lit t le t im e to devote to addit ional

assessment act ivit ies. As a result , an automated tool for grading student programs is

desirable. Many educators have used automated systems to assess and provide rapid

feedback on large volum es of student program m ing assignm ents.

• Generat ions of Assessm ent System s

[Douce, 2005] presented three generat ion of assessment systems:

1 . First Generat ion – Ear ly Assessm ent System s

The earliest example of automated test ing of program m ing assignm ents were found at

1960, where students subm it ted program s writ ten in assem bly language on punched

cards rather than using com pilers and text editors. A grader program was run against

a student program and two different results were returned, either “wrong answer” or

“program com plete” . a key advantages was also the efficient use of com put ing

resources, which allowed a greater number of students to learn program m ing.

25

2 . Second Generat ion – Tool- Or iented System s

The second generat ion assessment systems were developed using pre-exist ing tool

sets and ut ilit ies supplied with the operat ing system or programming environment .

The test ing engines and system s are often used and act ivated in the form of

command- line or GUI programming tools. An example of a second-generat ion

assessm ent tool can be seen in the work of [I saacson, 1989] .

The second generat ion assessm ent systems program m ing assignments assessm ent

involve two act ivit ies: checking the program to see that it operates correct ly and

checking the program to see that the programming style has been applied sensibly.

I n [Reek, 1989] the TRY system was int roduced, which int roduced automated test ing

to the student and allows students to test their program s using a tester program .

When the tester program is executed, the student is presented with a set of results

and the test at tem pt is recorded. Like other systems of that period, test ing is

perform ed by a sim ple character-by-character comparison of results generated against

expected ones.

I n [Jackson, 1997] The ASSYST system was int roduced to int roduce a schem e that

analyzes subm issions across a number of cr iter ia. ASSYST analyzes whether

subm issions are correct , whether subm issions are efficient in their use of CPU t ime,

and whether they have sensible m et r ic scores that correspond to com plexity and style.

3 . Third Generat ion – W eb- Or iented System s

Third-generat ion assessm ent systems make use of developments in web technology

and adopt increasingly sophist icated test ing approaches.

Som e of these works will be presented in related works sect ions.

26

2 .5 Related W orks

A literature review of previous efforts and works serves several purposes; it is possible

to gain an appreciat ion of the approaches adopted by others in the past by exam ining

the projects that have been undertaken, this is useful from both technical and didact ic

perspect ives. Previous projects m ay be able to inform current development by

illum inat ing the kinds of problem s that were encountered and how they were

overcome, whether a part icular applicat ion was successful and whether other system

developers had any insights into how contem porary systems should be const ructed.

2 .5 .1 The W eb- Bas ed Grading Project (W BGP)

I n (David, 2005) the author described web-based grading software for grading

computer science projects which was developed at Ohio University, and it is an open-

source effort to provide a set of tools to help com puter science educators build web

versions of graded student assignments and provides facilit ies to build, test , and

annotate student source code with com m ents concerning program m ing style and

docum entat ion.

Figure 1 - WBGP Interface

27

2 .5 .2 W eb- CAT: A W eb- based Center for Autom ated Test ing

I n (Edwards, 2004) the author presented Web-CAT, an advanced autom ated grading

system designed to process com puter programming assignments and was developed

at Virginia Polytechnic I nst itute and State University.

Web-CAT can grade students on how well they test their own code and supports

vir tually any model of program grading, assessm ent , and feedback generat ion.

Web-CAT runs on a server and provides all of it s capabilit ies via a web interface. All

subm ission act ivity, feedback, viewing of results, and grading act ivit ies take place via

the web browser.

Figure 2 - Web-CAT: Students Submit Assignments

2 .5 .3 Subm it and Progtst :

I n [Harr is, 2004] the author discussed tools used in int roductory programming course

that assist in the program evaluat ion process and make program grading easier. The

two tools to autom ate the program m ing assignm ent subm ission and evaluat ion

process are Subm it and Progtst .

• The Subm it ut ilit y provides a mechanism for sending to the inst ructor all required

m aterials in elect ronic form with an accurate t im e-stam p.

• The Progtst ut ilit y works in conjunct ion with subm it to test programs when they

are subm it ted.

• Subm it and Progtst were presented by the Department of Computer Science at

James Madison University, Harr isonburg.

28

2 .5 .4 List of Previous Projects Features:

AA uu tt oo mm aa tt ee dd
TTee ss tt ii nn gg
PPrr oo jj ee cc tt

FFee aa tt uu rr ee DD ee ss cc rr ii pp tt ii oo nn

1 . Environm ent
Linux/ Unix based environm ents (Mac-
OS, etc.) .

2 . Choose w ork ing
directory

The WBGP uses four main directories
for each graded project : Working
Directory, Subm ission Directory, Test
Case Directory, Example Solut ions
Directory.

3 . Configur ing project

A detailed non-easy configurat ion
needed, for exam ple: Execut ion t im e
lim it : the amount of t im e that the shell
scripts will give each compilat ion/ test
case before it is Killed.

4 . Setup test cases
Set t ing up the test , the test ing
directory should be included.

5 . Un- Tar students
subm issions

Students subm it their zipped files and
in this step they will be unzipped under
student directory.

6 . Com pile students
projects

Compile students’ subm it ted files.

7 . Evaluate
com pila t ion results

Evaluat ion of results is m ade.

8 . Execute test cases Run tests.

9 . Evaluate results of
test ing

Evaluate test ing.

1 0 . Evaluate com m ents Evaluate com m ents.

1 1 . Evaluate
Design/ Code Evaluate Design/ Code.

1 . W BGP

1 2 . Grade Grade and build WebPages.

1 . Environm ent Plug- in-based web applicat ion

2 . For inst ructors:

Web-CAT serves as a course
m anagem ent system for inst ructors in
order to conduct com puter science
courses at universit ies.

2 . W eb- CAT

• Creat ing an
assignm ent

Web-CAT provides a wizard-based
interface to inst ructors for set t ing up
program m ing assignments.

29

• Uploading a
student roster .

Web-CAT provides inst ructors with the
ability to upload a list of students that
are enrolled- in a part icular course.

• View ing grades
Web-CAT provides the inst ructor with
the abilit y to view grades of students,
either individually or as a class.

• Add Com m ents

I nst ructors can add their own
com m ents and point deduct ions to any
source file line, enter overall comm ents
on the ent ire assignment , and view or
m odify total deduct ions

3 . For students:

Web-CAT serves as an online
subm ission system for students and
allows them to view reports for already
subm it ted assignm ents.

• Subm it t ing an
assignm ent

Web-CAT allows students to subm it an
assignm ent for autom at ic grading and
feedback.

• View ing repor ts

Web-CAT allows students to view
reports for already subm it ted
assignm ents using a wizard-based
interact ion.

• E- m ail
not if ica t ion

Students get autom at ic e-m ail
not ificat ion when their assignment
grading has been completed

The Subm it program is used to subm it assignm ent files to the
inst ructor.

1 . For Student : 3 . Subm it
Prog- tst

• Displaying m enu
Menu of choices indicat ing which faculty
member and for which course the files
will be subm it ted.

• Menu of

assignm ents

The student is provided with a menu of
assignments available for subm ission,
specific to course- id.

• Subm it

assignm ent

After the assignm ent is specified, the
student is prom pted for the names of
the files to be subm it ted. After
specifying the file nam e(s) , the student
then must respond to an honour pledge
declarat ion and indicate they have
received no unauthorized assistance in
com plet ing the assignm ent . I f they fail
to do so, the subm it aborts.

30

 • PDF repor t

The student is provided with a PDF
report . The report provides the
subm ission informat ion (student nam e,
account , date, assignm ent , late
penalty, honour pledge, etc) and a
list ing of the subm it ted source files.

 2 . For I nst ructor :

• Specify a due
date

The inst ructor can specify a due date
and a schedule of penalt ies for late
subm issions, a " late penalty" (if any) is
calculated based on the t ime of
subm ission.

• Create f ile
directory

- The subm it ted files are copied to a
directory that is created to store the
subm it ted m aterial, the created
directory and its contents all belong to
the inst ructor and are not accessible to
the student .

- Since each subm ission results in a
new directory being created,
subsequent subm issions do not
overwrite earlier ones.

• Com pile f iles

- The Subm it program compiles all
subm it ted source code files (the
inst ructor 's copy) .

- I f the program fails to compile, an
error message is output and the
subm ission aborts.

• Test f iles

- I f the program com piles, the
executable that is produced is supplied
to the Prog- tst program. For a number
of test cases, the actual output
generated by the user's executable is
com pared to the correct output .

- I f the student 's executable fails a test ,
an error message is output and the
subm ission aborts.

- I f the executable passes all the tests,
a success message is output and the
inst ructor 's directory containing the
subm ission is m arked as correct .

3 . Subm it
Prog- tst

• Generate repor t

- I n addit ion to the onscreen messages,
Subm it generates a subm ission report .

- A copy of the report in text format is
created both in the inst ructor 's
subm ission directory and in the working
directory of the student .

- I f the program compiled correct ly, a
summary of the subm it output is
included. I f a test failed, detailed
informat ion on that test is included.

31

CChh aa pp tt ee rr 33 :: SSyy ss tt ee mm AA nn aa ll yy ss ii ss
3

3 .1 The Autom ated Test ing Tool for Students’ Program Go als and

Object ives

1 . I ncrease the students test ing sk ills by a llow ing st udents to understand

and subm it the ir ow n test cases and data a long w ith the ir program s.

Students are not rewarded for perform ing test ing of their own implem entat ions. As

a result , students perform less test ing on their own. I nstead, they rely on

inst ructor provided sample data and ignore the possibility of varying scenarios.

Using the autom ated tool will encourage m ore test ing thinking and planning from

the student and as a result bet ter testers in the future.

2 . Reduce the am ount of educators’ w orks and t im e spen t on assessm ent

process.

I nst ructors are overloaded with work while teaching com puter courses. I t would be

difficult for them to provide extensive feedback on every student program

especially if the class size is a large number. The lack of appropriate feedback and

assessment of student programs could serve to be a major difficulty to include

software test ing in the classroom .

Using the automated test ing tools will help the educators in the assessment

process and reduce the am ount of work needed to teach test ing.

3 . I m prove the int roductory Java co urse quality by enhancing the

assignm ents form to m eet the autom at ion requirem ent s.

Students will pract ice using an enhanced version of assignments. The assignment

descript ions and assessment pr inciples are specified in a detailed form to be

prepared for automat ic assessment . This will involve students in more test ing; as a

result they will be aware of how to test their codes while writ ing their programs.

4 . Observe the collected data and invest igate the resu lts of using such

system

The results of using the tool and both the students grades and the collected

students’ background can be used to analyze the impact of autom aton on both

students and inst ructors.

32

3 .2 The Autom ated Test ing Tool for Students’ Program Fe atures and

Specif ica t ions

AA cc tt oo rr UUssee CCaa ssee DD ee sscc rr ii pp tt ii oo nn PPrr ii oo rr ii tt yy NN oo tt ee ss

Ü I nst ructor :

1 . Create
Assignm ent

I nst ructor creates assignm ent
and fills informat ion:
- Assignm ent nam e
- Assignm ent descript ion
- URL
- Upload assignment files
- Grade
- Max Test files

High

Course is
created by
another
system .

2 . Edit
Assignm ent

- Edit assignment informat ion. Normal

3 . Specify a
due date

- Assignm ent due date should be
specified and if any penalty to
be calculated.

4 . Close
Assignm ent

- According to the assignment
due date, assignment will be
closed automat ically or
manually by inst ructor.

Low

I nst ructor
has two
opt ions
either
m anually or
autom at ically

5 . Delete
Assignm ent

- I nst ructor can delete an
assignment .

Low

6 . Upload
Model

Answ er

- I nst ructor upload m odel answer
that student can view after
assignm ent is closed.

Normal

7 . Test
assignm ent

f iles

- I nst ructor can use the tool to
test the assignm ent .
(inst ructor copy)

High

8 . Com pile
f iles

- The tool compiles all
subm it ted source code files, if
the program fails to com pile,
an error m essage is output
and the subm ission aborts.

Normal

Ü I nst ructor :

9 . Register
Student

- I nst ructor confirms student
regist rat ion.

- After inst ructor confirm at ion,
the student is able to use the
tool.

Low

33

1 0 . View
Student
Results

- View student ’s test ing
results.

High
Many views
opt ions could
be m ade.

1 1 . Grade
Student

- I nst ructor grades the
students according his
recorded results, non
subm it ted assignment will be
graded zero autom at ically.

High

Failed test ing
records could
be graded by
viewing the
code and
test files.

1 2 . Add
Com m ent

- I nst ructor can add com m ents
about the student code.

High

1 3 . View
Students
Grades

- I nst ructor views all students’
grades of all assignm ents.

High

I m port to
excel opt ion
can be
added.

1 4 . Delete
All Students

- At the end of course
inst ructors delete all
registered students.

Low

To prevent
students to
use the tool
after course
ends.

1 5 . Delete
Student

- Delete student and disallow
him to use the tool.

Normal
To protect
the collected
results.

Ü Student :

1 . Sign Up

- Student apply to use the tool
by entering his inform at ion:

- Name
- User Nam e is the Student I D
- Password
- GPA
- Grades in previous

program m ing courses

Low

User Name is
the student
I D, GPA and
previous
grades for
stat ist ical
analysis
purposes.

2 . Sign in

- Login to be able to use the
tool only confirmed and
registered students can use
the tool.

Low

Ü Student :

3 . Create
directory

- Each student has his own
directory

- Each subm ission has its
subdirectory under student
directory

High

Previous
subm ission
will not be
over write on
them .

34

4 . Display
m enu

- Student selects assignm ent
number where she will
subm it her program .

High

5 . Subm it
assignm ent

f iles

- Student is allowed to upload
test files according to the
assignm ent test files
assigned lim it .

- Student can upload files for
only opened assignm ents.

High

6 . Delete
assignm ent

f iles

- Student deletes uploaded
files to upload another set of
files.

- I f f iles were deleted all
recorded tests results for the
assignm ent will be deleted.

- Student can delete files for
only opened assignm ents.

Normal

7 . Com pile
f iles

- The tool compiles all
subm it ted source code files, if
the program fails to com pile,
an error m essage is output
and the subm ission aborts.

Normal

8 . Run Test
- Student run tests after

uploading files
High

9 . Save
Results

- I f test passes the student can
save the results and a new
record is added to be viewed
by inst ructor.

- Student can save failed tests,
I f due date was reached for
example.

- Student can save results for
only open assignm ents.

- Lim ited number of savings
assigned by inst ructor.

High

I nst ructor
could grade
student for
failed tests
results by
viewing the
student
program
code and
test files.

1 0 . Delete
Results

- I f test fail the student can
delete the test results and t ry
again.

- Student can delete the
passed test results to change
his code for example.

- Student can delete results for
only open assignm ents.

High

1 1 . View
Results

- Student can view his results. Normal

35

1 2 . View
Grade

- Student can view his grade
given by inst ructor.

Normal

1 3 . View
I nst ructor
Com m ents

- View I nst ructor com m ent on
student code.

Low

1 4 . E- m ail
not if icat ion

- Students get autom at ic e-
m ail not ificat ion when their
assignm ent grading has been
completed.

Low

36

3 .3 Autom ated Test ing Tool For Students’ Program Archit ecture:

• Autom ated Test ing Tool for Students’ Program is a web-based system with
three t ires architecture:

11 .. Client Brow ser Tire:

I nterface of the client where the clients interact with system and it is capable
to send and receive requests to and from the server.

22 .. W eb Server Tire:

All java classes and test ing are placed in this t ire and it is capable to serve
HTML pages to be viewed by the client , and handle their requests.

3 . Database and Files Server Tire:

This t ire holds subm it ted data, where files server holds the subm it ted files;
the database holds the related user informat ion such as grades, results...Etc.

Client Web

browser

Web
Server

Files

Database

Http
Request/Response

Figure 3 - Automated Testing Tool for Students’ Program Architecture

37

3 .4 Project Plan:

Tasks M
o

n
th

s
2

0
0

7

March April May June July August Septem ber October Novem ber Decem ber

Literature Review

System Analysis

System Design

I m plem entat ion

Test ing

I m pact
Evaluat ion

Docum entat ion

38

3 .5 Java Test ing Tools

• List of Ava ilable Tools

JJaa vv aa TTee ss tt ii nn gg TToo oo ll DD ee ss cc rr ii pp tt ii oo nn UURRLL

1 . JUnit
JUnit is a regression test ing fram ework writ ten by Erich Gamma and Kent Beck. I t is used by the
developer who implements unit tests in Java. JUnit is Open Source Software.

JUnit

2 . Cactus
Cactus is a simple test framework for unit test ing server-side java code e.g. Servlets. The intent
of Cactus is to lower the cost of writ ing tests for server-side code. I t uses JUnit and extends it .

Cactus

3 . Abbot

The Abbot fram ework is a Java library for GUI unit test ing and funct ional test ing. I t provides
m ethods to reproduce user act ions and exam ine the state of GUI components. The framework
may be invoked direct ly from Java code or accessed without programming through the use of
scr ipts. Abbot is a fr iendly JUnit extension for GUI test ing

Abbot

4 . Jam eleon

Jameleon is an acceptance- level automated test ing tool that separates applicat ions into features
and allows those features to be t ied together independent ly, creat ing test -cases. These test -cases
can then be data-driven and executed against different environm ents. Even though it would be
possible to write unit tests using Jameleon, Jameleon was designed with integrat ion and
acceptance- level test ing in m ind.

Jam eleon

5 . TestNG

TestNG is a test ing framework inspired from JUnit and NUnit but int roducing some new
funct ionalit y that make it more powerful and easier to use, such as: Flexible test configurat ion. -
Default JDK funct ions for runt ime and logging (no dependencies) . - Powerful execut ion m odel-
Supports dependent m ethods.

TestNG

39

ÜÜ Selected Test ing Tool – JUnit

6 . TESTARE

TESTARE is a test ing framework that aims to simplify the test development process for
dist r ibuted enterprise JAVA applicat ions. I t t r ies to achieve this goal by focusing on two main
direct ions:

 * provide st raight forward and easy to use " in container" test ing capabilit ies
 * provide nat ive support for test environm ent m anagem ent .

TESTARE

7 . Jem m y

Jemmy is a JavaTM library that is used to create automated tests for Java GUI applicat ions. I t
contains methods to reproduce all user act ions which can be perform ed on Swing/ AWT
com ponents (i.e. but ton pushing, text typing ...) . Jem m yTest is a program writ ten in Java which
uses the Jemmy API to test applicat ions.

Jem m y

8 . Jacareto

Jacareto is a capture & replay tool for program s writ ten in Java. You can capture act ions on
applicat ions and replay them later on (like macros) . Jacareto can be used for m any purposes:
 * GUI tests
 * Creat ion of anim ated dem onst rat ions
 * Creat ion of m acros

Jacareto

9 . JTR Java Test
Runner

JTR (Java Test Runner) is a framework meant for fastening the building of both complex and
sim ple test environm ents. I t is based on concepts such as I nversion of Cont rol, and is ready for
EJB and JMS test ing. The JTR 2.0 fram ework will give you the chance to code only the test ing
logic. All the boring m iddleware- related tasks (connect ing to Connect ion Factories, opening
connect ions, sharing connect ions, opening sessions, handling except ions, ret r ieving adm inistered
objects) are carr ied out by the JTR 2.0 runt ime on your behalf according to what you have stated
in the j t r .xm l configurat ion file.

JTR Java Test
Runner

1 0 . Jet if

The Jet if is a regression test framework in pure Java. I t provides a simple and flexible
architecture for Java unit test ing and funct ional test ing, and used for test ing in both individual
and enterprise software developm ent . I t 's easy to use, but powerful, and with som e im portant
features for enterprise software test ing. This project was inspired by JUnit , JTestCase and
TestNG. There are several ideas come from JUnit , for example the assert ion mechanism and
TestListener concept , so it 's easy to m ove to Jet if from JUnit .

Jet if

40

References:

[1] Ala-Mutka, K. and Jarvinen, H. “Assessment Process for Program m ing

Assignments” , I n Proceedings of the I EEE internat ional Conference on

Advanced Learning Technologies, I EEE Com puter Society, 2004, 181-185.

I EEE Xplore

[2] Bach, J. “Test Autom at ion Snake Oil” . I n Proceedings of the 14th I nternat ional

Conference and Exposit ion on Test ing Com puter Software. Windows Tech

Journal. 1999. PDF

[3] Barr iocanal, E. G., Urbán, M. S., Cuevas, I . A., and Pérez, P. D. “An

experience in integrat ing autom ated unit test ing pract ices in an int roductory

program m ing course” , SI GCSE Bull, 34, ACM Press, 2002, 125-128. ACM

[4] Beck, K. "Aim , Fire," I EEE Software, vol. 18, no. 5, 2001, pp.87-89.

I EEE Xplore

[5] Berner, S., Weber, R., and Keller, R. K. “Observat ions and lessons learned

from autom ated test ing” . I n Proceedings of the 27th internat ional Conference

on Software Engineering, 2005, pp.571-579. ACM

[6] David, J.”Web-based Grading: Further Experiences and Student At t itudes” , I n

Proceedings of ASEE/ IEEE Front iers in Educat ion Conference, IEEE, 2005, p

18-23. I EEE Xplore.

[7] Douce, C., Livingstone, D., and Orwell, J. “Automat ic test -based assessment

of program m ing: A review” , Journal on Educat ional Resources in Com put ing,

2005. ACM

[8] Dust in, E., Rashka, J. and Paul, J. Autom ated Software Test ing: I nt roduct ion,

Managem ent , and Perform ance. Addison Wesley Professional, 1999. HTML

[9] Edvardsson, J. “A survey on autom at ic test data generat ion” . I n Proceedings

of the Second Conference on Com puter Science and Engineering in Linkoping,

1999, pp.21-28. PDF

[10] Edwards, S. H. ”Using software test ing to m ove students from t r ial-and-error

to reflect ion- in-act ion” , I n Proceedings of the 35th SI GCSE Technical

Sym posium on Com puter Science Educat ion, ACM Press, 2004, pp.26-30,

ACM

[11] Edwards, S. H. “ I m proving student perform ance by evaluat ing how well

students test their own program s” J. Educ. Resour. Com put . 3, 2003. ACM

[12] Harr is, J. A., Adams, E. S., and Harr is, N. L. “Making program grading easier:

but not totally autom at ic” J. Comput . Small Coll. 20, 2004, 248-261. ACM

41

[13] I saacson, P. C. and Scot t , T. A. “Automat ing the execut ion of student

program s” SI GCSE Bull. 21, 2, 1989, 15-22. ACM

[14] Jackson, D. and Usher, M. “Grading student program s using ASSYST” , I n

Proceedings of the Twenty-Eighth SI GCSE Technical Sym posium on Com puter

Science Educat ion, ACM Press, 1997, 335-339. ACM

[15] Janzen, D. S. and Saiedian, H. “Test -driven learning: int r insic integrat ion of

test ing into the CS/ SE curr iculum ” , I n Proceedings of the 37th SI GCSE

Technical Sym posium on Com puter Science Educat ion, ACM Press, 2006,

pp.254-258. ACM

[16] Korel, B. and Al-Yam i, A. M. “Automated regression test generat ion” , I n

Proceedings of the 1998 ACM SI GSOFT internat ional Sym posium on Software

Test ing and Analysis, ACM Press, 1998, pp.143-152. ACM

[17] Li, k. and Wu, M. Effect ive GUI Test ing Autom at ion: Developing an Autom ated

GUI Test ing Tool. John Wiley & Sons, 2004. PDF

[18] Link, J. Unit Test ing in Java: How Tests Drive the Code, Morgan Kaufmann,

2003.

[19] Massol, V. and Husted, T. JUnit in Act ion. Manning Publicat ions, 2003. PDF

[20] McGee, P. and Kaner, C. “Experim ents with high volume test automat ion” ,

SI GSOFT Soft . Eng. Notes 29, 5, 2004, pp.1-3. ACM

[21] Myers, G.J. The Art of Software Test ing, John Wiley & Sons, 1976 PDF

[22] Niemeyer, G. and Poteet , J. Ext reme Programming with Ant : Building and

Deploying Java Applicat ions with JSP, EJB, XSLT, XDoclet , and JUnit . Sam s,

2003. HTML

[23] Reek, K. A. “The TRY system -or- how to avoid test ing student programs” , I n

Proceedings of the Twent ieth SI GCSE Technical Sym posium on Com puter

Science Educat ion, ACM Press, 1989, 112-116. ACM

[24] Shepard, T., Lam b, M., and Kelly, D. “More test ing should be taught” ,

Commun. ACM 44, 2001, pp.103-108. ACM

[25] Sheard, J., Dick, M., Markham , S., Macdonald, I . , and Walsh, M. “Cheat ing

and plagiar ism : percept ions and pract ices of first year I T students” , SI GCSE

Bull, 2002, 183-187. ACM

[26] Srivastava, A. “Test Automat ion and Software Developm ent ” , Technology

Review# 2002-07. 2002. Tata Consultancy Services. PDF

42

[27] Snyder, R. M. ”Teacher specificat ion and student implem entat ion of a unit

test ing methodology in an int roductory program m ing course” , J. Com put .

Sm all Coll. 2004, pp.22-32. ACM

[28] Stephen H. “Teaching software test ing: automat ic grading meets test - first

coding” , I n Com panion of the 18th Annual ACM SI GPLAN Conference on

Object -Oriented Program m ing, System s, Languages, and Applicat ions, ACM

Press, 2003, pp.318-319. ACM

[29] Xie, T. “ Improving Effect iveness of Automated Software Test ing in the

Absence of Specificat ions” , Doctoral Thesis. University of Washington, 2005.

I EEE Xplore

[30] Yang, Q., Li, J. J., and Weiss, D. “A survey of coverage based test ing tools” ,

I n Proceedings of the 2006 internat ional Workshop on Automat ion of Software

Test , ACM Press, 2006, pp.99-103

[31] WBGP: ht tp: / / ace.cs.ohiou.edu/ ~ juedes/ wbgp/ wbgp.htm l

[32] Web-Cat : ht tp: / / web-cat .cs.vt .edu/

[33] JUnit : ht tp: / / www.junit .org/

[34] Abbot : ht tp: / / abbot .sourceforge.net /

[35] Jam eleon: ht tp: / / jam eleon.sourceforge.net / index.htm l

[36] TestNG: ht tp: / / www.beust .com / testng/

[37] TESTARE: ht tps: / / testare.dev.java.net /

[38] Jem m y: ht tp: / / jemmy.netbeans.org/

[39] JTR Java Test Runner ht tp: / / j t runner.sourceforge.net /

[40] Jet if: ht tp: / / jet if.sourceforge.net / index.php

